Suppr超能文献

分数阶乙肝病毒感染数学模型的全局稳定性研究

The global stability investigation of the mathematical design of a fractional-order HBV infection.

作者信息

Karaman Bahar

机构信息

Department of Mathematics, Eskişehir Technical University, 26470 Eskisehir, Turkey.

出版信息

J Appl Math Comput. 2022;68(6):4759-4775. doi: 10.1007/s12190-022-01721-2. Epub 2022 Mar 31.

Abstract

This work presents approximate solutions of a fractional-order design for hepatitis B virus infection. The numerical solution of the system is given by using an implicit fractional linear multi-step method of the second order. Here, Caputo fractional derivative is considered for fractional derivative. Basic theoretical properties are discussed. We prove the global stability analysis of the fractional-order model. Numerical simulations are demonstrated to display our theoretical results. This current study is to reveal that the order of the fractional derivative does not affect the regular state's stability concerning both theoretical and numerical results. Besides, if the fractional-order increases, the solutions converge more rapidly to the regular states. Finally, we note that this study can provide beneficial outcomes for understanding and estimating the dissipation of distinct epidemics.

摘要

这项工作给出了乙型肝炎病毒感染分数阶设计的近似解。该系统的数值解通过使用二阶隐式分数线性多步法给出。这里,分数导数采用Caputo分数导数。讨论了基本理论性质。我们证明了分数阶模型的全局稳定性分析。通过数值模拟展示了我们的理论结果。当前这项研究旨在揭示分数导数的阶数在理论和数值结果方面均不影响稳态的稳定性。此外,当分数阶增加时,解会更快地收敛到稳态。最后,我们指出这项研究可为理解和估计不同流行病的消散提供有益成果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d129/8968785/2fcfcd4fb2ee/12190_2022_1721_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验