School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, People's Republic of China.
Department of Mathematics, Abdul Wali Khan University Mardan, Mardan, Pakistan.
Sci Rep. 2023 Aug 20;13(1):13550. doi: 10.1038/s41598-023-40745-x.
This present paper aims to examine various epidemiological aspects of the monkeypox viral infection using a fractional-order mathematical model. Initially, the model is formulated using integer-order nonlinear differential equations. The imperfect vaccination is considered for human population in the model formulation. The proposed model is then reformulated using a fractional order derivative with power law to gain a deeper understanding of disease dynamics. The values of the model parameters are determined from the cumulative reported monkeypox cases in the United States during the period from May 10th to October 10th, 2022. Besides this, some of the demographic parameters are evaluated from the population of the literature. We establish sufficient conditions to ensure the existence and uniqueness of the model's solution in the fractional case. Furthermore, the stability of the endemic equilibrium of the fractional monkeypox model is presented. The Lyapunov function approach is used to demonstrate the global stability of the model equilibria. Moreover, the fractional order model is numerically solved using an efficient numerical technique known as the fractional Adams-Bashforth-Moulton method. The numerical simulations are conducted using estimated parameters, considering various values of the fractional order of the Caputo derivative. The finding of this study reveals the impact of various model parameters and fractional order values on the dynamics and control of monkeypox.
本文旨在利用分数阶数学模型研究猴痘病毒感染的各种流行病学方面。首先,使用整数阶非线性微分方程来构建模型。在模型构建中考虑了人类群体的不完全疫苗接种。然后,使用幂律分数阶导数对模型进行重新构建,以更深入地了解疾病动力学。模型参数的值是根据 2022 年 5 月 10 日至 10 月 10 日期间美国报告的猴痘病例累积数据确定的。此外,一些人口统计学参数是根据文献中的人口数据评估的。我们建立了充分条件,以确保分数阶情况下模型解的存在性和唯一性。此外,还提出了分数猴痘模型地方病平衡点的稳定性。使用 Lyapunov 函数方法证明了模型平衡点的全局稳定性。此外,使用分数阶 Adams-Bashforth-Moulton 方法这一高效数值技术对分数阶模型进行数值求解。使用估计的参数进行数值模拟,考虑了 Caputo 导数的分数阶的各种值。本研究的结果揭示了各种模型参数和分数阶值对猴痘动力学和控制的影响。