Xie Xiaoxue, Feng Yi, Zhang Hanxi, Su Qingqing, Song Ting, Yang Geng, Li Ningxi, Wei Xiaodan, Li Tingting, Qin Xiang, Li Shun, Wu Chunhui, Zhang Xiaojuan, Wang Guixue, Liu Yiyao, Yang Hong
Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China.
Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, PR China.
Bioact Mater. 2022 Mar 11;16:107-119. doi: 10.1016/j.bioactmat.2022.03.008. eCollection 2022 Oct.
The clinical outcomes of cancer nanovaccine have been largely impeded owing to the low antigen-specific T cell response rate and acquired resistance caused by the immunosuppressive tumor microenvironment (TME). Here, we reported a tumor acidity-responsive nanovaccine to remodel the immunosuppressive TME and expand the recruitment of tumor infiltrating lymphocytes (TILs) using hybrid micelles (HM), which encapsulated colony stimulating factor 1 receptor (CSF1-R) inhibitor BLZ-945 and indoleamine 2,3-dioxygenase (IDO) inhibitor NLG-919 in its core and displayed a model antigen ovalbumin (OVA) on its surface (denoted as BN@HM-OVA). The bioactive nanovaccine is coated with a polyethylene glycol (PEG) shell for extending nanoparticle circulation. The shell can be shed in response to the weakly acidic tumor microenvironment. The decrease in size and the increase in positive charge may cause the deep tumor penetration of drugs. We demonstrated that the bioactive nanovaccine dramatically enhance antigen presentation by dendritic cells (DCs) and drugs transportation into M1-like tumor-associated macrophages (TAMs) and tumor cells via size reduction and increasing positive charge caused by the weakly acidic TME. Such bioactive nanovaccine could remodel the immunosuppressive TME into an effector T cells favorable environment, leading to tumor growth inhibition in prophylactic and therapeutic E.G7-OVA tumor models. Furthermore, combining the bioactive nanovaccine with simultaneous anti-PD-1 antibody treatment leads to a long-term tumor inhibition, based on the optimal timing and sequence of PD-1 blockade against T cell receptor. This research provides a new strategy for the development of efficient cancer immunotherapy.
由于抗原特异性T细胞应答率低以及免疫抑制性肿瘤微环境(TME)导致的获得性耐药,癌症纳米疫苗的临床疗效在很大程度上受到了阻碍。在此,我们报道了一种肿瘤酸度响应性纳米疫苗,它利用混合胶束(HM)重塑免疫抑制性TME并扩大肿瘤浸润淋巴细胞(TILs)的募集,该混合胶束在其核心封装了集落刺激因子1受体(CSF1-R)抑制剂BLZ-945和吲哚胺2,3-双加氧酶(IDO)抑制剂NLG-919,并在其表面展示了模型抗原卵清蛋白(OVA)(记为BN@HM-OVA)。这种生物活性纳米疫苗涂有聚乙二醇(PEG)外壳以延长纳米颗粒的循环时间。该外壳可响应弱酸性肿瘤微环境而脱落。尺寸的减小和正电荷的增加可能会使药物深入肿瘤。我们证明,这种生物活性纳米疫苗通过由弱酸性TME引起的尺寸减小和正电荷增加,显著增强了树突状细胞(DCs)的抗原呈递以及药物向M1样肿瘤相关巨噬细胞(TAMs)和肿瘤细胞的转运。这种生物活性纳米疫苗可以将免疫抑制性TME重塑为有利于效应T细胞的环境,从而在预防性和治疗性E.G7-OVA肿瘤模型中抑制肿瘤生长。此外,基于针对T细胞受体的PD-1阻断的最佳时机和顺序,将这种生物活性纳米疫苗与同时进行的抗PD-1抗体治疗相结合可导致长期的肿瘤抑制。这项研究为开发高效的癌症免疫疗法提供了一种新策略。