文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过仿生纳米疫苗利用β-肾上腺素能受体信号阻断改善癌症免疫治疗

Leveraging β-Adrenergic Receptor Signaling Blockade for Improved Cancer Immunotherapy Through Biomimetic Nanovaccine.

作者信息

Yang Chao, He Yi, Chen Fangman, Zhang Fan, Shao Dan, Wang Zheng

机构信息

Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China.

CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China.

出版信息

Small. 2023 Apr;19(14):e2207029. doi: 10.1002/smll.202207029. Epub 2023 Jan 26.


DOI:10.1002/smll.202207029
PMID:36703529
Abstract

The establishment of effective antitumor immune responses of vaccines is mainly limited by insufficient priming tumor infiltration of T cells and immunosuppressive tumor microenvironment (TME). Targeting β-adrenergic receptor (β-AR) signaling exerts promising benefits on reversing the suppressive effects directly on T cells, but it appears to have considerably limited antitumor performance when combined with vaccine-based immunotherapies. Herein, a tumor membrane-coated nanoplatform for codelivery of adjuvant CpG and propranolol (Pro), a β-AR inhibitor is designed. The biomimetic nanovaccine displayed an improved accumulation in lymph nodes and sufficient drug release, thereby inducing dendritic cell maturation and antigen presentation. Meanwhile, the integration of vaccination and blockade of β-AR signaling not only promoted the priming of the naive CD8+ T cells and effector T cell egress from lymph nodes, but also alleviated the immunosuppressive TME by decreasing the frequency of immunosuppressive cells and increasing the tumor infiltration of B cells and NK cells. Consequently, the biomimetic nanovaccines outperformed greater prophylactic and therapeutic efficacy than nanovaccines without Pro encapsulation in B16-F10 melanoma mice. Taken together, the work explored a biomimetic nanovaccine for priming tumor infiltration of T cells and immunosuppressive TME regulation, offering tremendous potential for a combined β-AR signaling-targeting strategy in cancer immunotherapy.

摘要

疫苗有效抗肿瘤免疫反应的建立主要受到T细胞初始肿瘤浸润不足和免疫抑制性肿瘤微环境(TME)的限制。靶向β-肾上腺素能受体(β-AR)信号传导在直接逆转对T细胞的抑制作用方面具有显著益处,但与基于疫苗的免疫疗法联合使用时,其抗肿瘤性能似乎相当有限。在此,设计了一种用于共递送佐剂CpG和β-AR抑制剂普萘洛尔(Pro)的肿瘤膜包被纳米平台。这种仿生纳米疫苗在淋巴结中表现出更好的积聚和充分的药物释放,从而诱导树突状细胞成熟和抗原呈递。同时,疫苗接种与β-AR信号传导阻断的整合不仅促进了初始CD8+T细胞的活化和效应T细胞从淋巴结的迁出,还通过降低免疫抑制细胞的频率和增加B细胞和NK细胞的肿瘤浸润来减轻免疫抑制性TME。因此,在B16-F10黑色素瘤小鼠中,仿生纳米疫苗比未包封Pro的纳米疫苗具有更好的预防和治疗效果。综上所述,该研究探索了一种用于引发T细胞肿瘤浸润和调节免疫抑制性TME的仿生纳米疫苗,为癌症免疫治疗中联合靶向β-AR信号传导策略提供了巨大潜力。

相似文献

[1]
Leveraging β-Adrenergic Receptor Signaling Blockade for Improved Cancer Immunotherapy Through Biomimetic Nanovaccine.

Small. 2023-4

[2]
Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy.

Biomaterials. 2020-3

[3]
Blockade of β-Adrenergic Receptors Improves CD8 T-cell Priming and Cancer Vaccine Efficacy.

Cancer Immunol Res. 2019-9-16

[4]
Leveraging Senescent Cancer Cell Membrane to Potentiate Cancer Immunotherapy Through Biomimetic Nanovaccine.

Adv Sci (Weinh). 2024-8

[5]
Biomimetic Nanovaccines Potentiating Dendritic Cell Internalization via CXCR4-Mediated Macropinocytosis.

Adv Healthc Mater. 2023-2

[6]
Manganese oxide-constructed multifunctional biomimetic nanovaccine for robust tumor-specific T cell priming and chemodynamic therapy.

Biomaterials. 2024-9

[7]
Dual-Targeted Self-Adjuvant Heterocyclic Lipidoid@Polyester Hybrid Nanovaccines for Boosting Cancer Immunotherapy.

ACS Nano. 2024-6-18

[8]
A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists.

ACS Nano. 2024-3-5

[9]
Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.

Acta Biomater. 2023-2

[10]
Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.

Cancer Sci. 2015-2

引用本文的文献

[1]
Biomimetic nanovaccines in cancer therapy: mechanisms, efficacy, and clinical translation.

Mater Today Bio. 2025-7-18

[2]
Sympathetic nervous system in tumor progression and metabolic regulation: mechanisms and clinical potential.

J Transl Med. 2025-7-25

[3]
Hijacking homeostasis: the brain-body neural circuitry in tumor pathogenesis and emerging therapeutic frontiers.

Mol Cancer. 2025-7-25

[4]
Molecular mechanisms and clinical value of the correlation between depression and cancer.

Med Oncol. 2025-5-17

[5]
Intrinsic ADRB2 inhibition improves CAR-T cell therapy efficacy against prostate cancer.

Mol Ther. 2024-10-2

[6]
Leveraging Senescent Cancer Cell Membrane to Potentiate Cancer Immunotherapy Through Biomimetic Nanovaccine.

Adv Sci (Weinh). 2024-8

[7]
Cell Membrane-Coated Biomimetic Nanoparticles in Cancer Treatment.

Pharmaceutics. 2024-4-12

[8]
Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy.

J Hematol Oncol. 2024-4-2

[9]
The quest for nanoparticle-powered vaccines in cancer immunotherapy.

J Nanobiotechnology. 2024-2-14

[10]
Biomimetic Nano-Drug Delivery System: An Emerging Platform for Promoting Tumor Treatment.

Int J Nanomedicine. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索