Division of Cardiology, Department of Medicine.
Department of Biomedical Engineering.
JCI Insight. 2022 Apr 8;7(7):e155640. doi: 10.1172/jci.insight.155640.
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can model heritable arrhythmias to personalize therapies for individual patients. Although atrial fibrillation (AF) is a leading cause of cardiovascular morbidity and mortality, current platforms to generate iPSC-atrial (a) CMs are inadequate for modeling AF. We applied a combinatorial engineering approach, which integrated multiple physiological cues, including metabolic conditioning and electrical stimulation, to generate mature iPSC-aCMs. Using the patient's own atrial tissue as a gold standard benchmark, we assessed the electrophysiological, structural, metabolic, and molecular maturation of iPSC-aCMs. Unbiased transcriptomic analysis and inference from gene regulatory networks identified key gene expression pathways and transcription factors mediating atrial development and maturation. Only mature iPSC-aCMs generated from patients with heritable AF carrying the non-ion channel gene (NPPA) mutation showed enhanced expression and function of a cardiac potassium channel and revealed mitochondrial electron transport chain dysfunction. Collectively, we propose that ion channel remodeling in conjunction with metabolic defects created an electrophysiological substrate for AF. Overall, our electro-metabolic approach generated mature human iPSC-aCMs that unmasked the underlying mechanism of the first non-ion channel gene, NPPA, that causes AF. Our maturation approach will allow for the investigation of the molecular underpinnings of heritable AF and the development of personalized therapies.
人诱导多能干细胞衍生的心肌细胞(iPSC-CMs)可模拟遗传性心律失常,从而为个体患者的治疗提供个性化方案。尽管心房颤动(AF)是心血管发病率和死亡率的主要原因,但目前生成 iPSC-心房(a)CMs 的平台不足以模拟 AF。我们应用了一种组合工程方法,该方法整合了多种生理线索,包括代谢调理和电刺激,以生成成熟的 iPSC-aCMs。我们使用患者自身的心房组织作为黄金标准基准,评估了 iPSC-aCMs 的电生理、结构、代谢和分子成熟。无偏转录组分析和基因调控网络推断确定了介导心房发育和成熟的关键基因表达途径和转录因子。只有从携带非离子通道基因突变的遗传性 AF 患者中生成的成熟 iPSC-aCMs 显示出心脏钾通道表达和功能增强,并揭示了线粒体电子传递链功能障碍。总之,我们提出离子通道重塑与代谢缺陷共同为 AF 创造了电生理底物。总的来说,我们的电代谢方法生成了成熟的人类 iPSC-aCMs,揭示了导致 AF 的第一个非离子通道基因 NPPA 的潜在机制。我们的成熟方法将允许研究遗传性 AF 的分子基础,并开发个性化治疗方法。