Suppr超能文献

人工智能在神经放射学中的应用的伦理考虑和公平性。

Ethical Considerations and Fairness in the Use of Artificial Intelligence for Neuroradiology.

机构信息

From the Department of Radiology (C.G.F.), Tufts University School of Medicine, Boston, Massachusetts

Department of Radiology (J.M.S., S.B.), University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

AJNR Am J Neuroradiol. 2023 Nov;44(11):1242-1248. doi: 10.3174/ajnr.A7963. Epub 2023 Aug 31.

Abstract

In this review, concepts of algorithmic bias and fairness are defined qualitatively and mathematically. Illustrative examples are given of what can go wrong when unintended bias or unfairness in algorithmic development occurs. The importance of explainability, accountability, and transparency with respect to artificial intelligence algorithm development and clinical deployment is discussed. These are grounded in the concept of "primum no nocere" (first, do no harm). Steps to mitigate unfairness and bias in task definition, data collection, model definition, training, testing, deployment, and feedback are provided. Discussions on the implementation of fairness criteria that maximize benefit and minimize unfairness and harm to neuroradiology patients will be provided, including suggestions for neuroradiologists to consider as artificial intelligence algorithms gain acceptance into neuroradiology practice and become incorporated into routine clinical workflow.

摘要

在这篇综述中,算法偏差和公平性的概念被定性和数学定义。给出了一些例子,说明了在算法开发中出现意外偏差或不公平时可能会出现什么问题。讨论了人工智能算法开发和临床部署的可解释性、问责制和透明度的重要性。这些都基于“首要原则”(首先,不造成伤害)的概念。提供了减轻任务定义、数据收集、模型定义、训练、测试、部署和反馈中的不公平和偏差的步骤。将讨论实施公平标准的问题,这些标准将最大限度地提高效益,同时将对神经放射学患者的不公平和伤害降到最低,包括为神经放射学家提供一些建议,因为人工智能算法在神经放射学实践中得到接受,并被纳入常规临床工作流程。

相似文献

1
Ethical Considerations and Fairness in the Use of Artificial Intelligence for Neuroradiology.
AJNR Am J Neuroradiol. 2023 Nov;44(11):1242-1248. doi: 10.3174/ajnr.A7963. Epub 2023 Aug 31.
2
Fairness of artificial intelligence in healthcare: review and recommendations.
Jpn J Radiol. 2024 Jan;42(1):3-15. doi: 10.1007/s11604-023-01474-3. Epub 2023 Aug 4.
3
Understanding Bias in Artificial Intelligence: A Practice Perspective.
AJNR Am J Neuroradiol. 2024 Apr 8;45(4):371-373. doi: 10.3174/ajnr.A8070.
4
Multidisciplinary considerations of fairness in medical AI: A scoping review.
Int J Med Inform. 2023 Oct;178:105175. doi: 10.1016/j.ijmedinf.2023.105175. Epub 2023 Aug 8.
6
Multi-stakeholder preferences for the use of artificial intelligence in healthcare: A systematic review and thematic analysis.
Soc Sci Med. 2023 Dec;338:116357. doi: 10.1016/j.socscimed.2023.116357. Epub 2023 Nov 4.
8
Ethics and artificial intelligence.
Rev Clin Esp (Barc). 2024 Mar;224(3):178-186. doi: 10.1016/j.rceng.2024.02.003. Epub 2024 Feb 12.
9
Guiding Principles to Address the Impact of Algorithm Bias on Racial and Ethnic Disparities in Health and Health Care.
JAMA Netw Open. 2023 Dec 1;6(12):e2345050. doi: 10.1001/jamanetworkopen.2023.45050.
10
Ethical Considerations for Artificial Intelligence in Medical Imaging: Deployment and Governance.
J Nucl Med. 2023 Oct;64(10):1509-1515. doi: 10.2967/jnumed.123.266110. Epub 2023 Aug 24.

引用本文的文献

2
Gross failure rates and failure modes for a commercial AI-based auto-segmentation algorithm in head and neck cancer patients.
J Appl Clin Med Phys. 2024 Jun;25(6):e14273. doi: 10.1002/acm2.14273. Epub 2024 Jan 23.
3
Understanding Bias in Artificial Intelligence: A Practice Perspective.
AJNR Am J Neuroradiol. 2024 Apr 8;45(4):371-373. doi: 10.3174/ajnr.A8070.

本文引用的文献

1
Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis.
J Neurointerv Surg. 2023 Mar;15(3):262-271. doi: 10.1136/jnis-2022-019456. Epub 2022 Nov 14.
2
3
Face recognition from research brain PET: An unexpected PET problem.
Neuroimage. 2022 Sep;258:119357. doi: 10.1016/j.neuroimage.2022.119357. Epub 2022 Jun 3.
4
Synthetic patient data in health care: a widening legal loophole.
Lancet. 2022 Apr 23;399(10335):1601-1602. doi: 10.1016/S0140-6736(22)00232-X. Epub 2022 Mar 28.
5
Validation of a Deep Learning Tool in the Detection of Intracranial Hemorrhage and Large Vessel Occlusion.
Front Neurol. 2021 Apr 29;12:656112. doi: 10.3389/fneur.2021.656112. eCollection 2021.
6
Artificial Intelligence and Human Life: Five Lessons for Radiology from the 737 MAX Disasters.
Radiol Artif Intell. 2020 Mar 18;2(2):e190111. doi: 10.1148/ryai.2020190111. eCollection 2020 Mar.
7
Errors, discrepancies and underlying bias in radiology with case examples: a pictorial review.
Insights Imaging. 2021 Apr 20;12(1):51. doi: 10.1186/s13244-021-00986-8.
9
Transparency and reproducibility in artificial intelligence.
Nature. 2020 Oct;586(7829):E14-E16. doi: 10.1038/s41586-020-2766-y. Epub 2020 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验