Suppr超能文献

氧和活性氧依赖调节植物生长和发育。

Oxygen and reactive oxygen species-dependent regulation of plant growth and development.

机构信息

The School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia.

School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK.

出版信息

Plant Physiol. 2021 May 27;186(1):79-92. doi: 10.1093/plphys/kiaa077.

Abstract

Oxygen and reactive oxygen species (ROS) have been co-opted during evolution into the regulation of plant growth, development, and differentiation. ROS and oxidative signals arising from metabolism or phytohormone-mediated processes control almost every aspect of plant development from seed and bud dormancy, liberation of meristematic cells from the quiescent state, root and shoot growth, and architecture, to flowering and seed production. Moreover, the phytochrome and phytohormone-dependent transmissions of ROS waves are central to the systemic whole plant signaling pathways that integrate root and shoot growth. The sensing of oxygen availability through the PROTEOLYSIS 6 (PRT6) N-degron pathway functions alongside ROS production and signaling but how these pathways interact in developing organs remains poorly understood. Considerable progress has been made in our understanding of the nature of hydrogen peroxide sensors and the role of thiol-dependent signaling networks in the transmission of ROS signals. Reduction/oxidation (redox) changes in the glutathione (GSH) pool, glutaredoxins (GRXs), and thioredoxins (TRXs) are important in the control of growth mediated by phytohormone pathways. Although, it is clear that the redox states of proteins involved in plant growth and development are controlled by the NAD(P)H thioredoxin reductase (NTR)/TRX and reduced GSH/GRX systems of the cytosol, chloroplasts, mitochondria, and nucleus, we have only scratched the surface of this multilayered control and how redox-regulated processes interact with other cell signaling systems.

摘要

氧气和活性氧(ROS)在进化过程中被共同用来调节植物的生长、发育和分化。ROS 和代谢或植物激素介导的过程产生的氧化信号控制着植物发育的几乎各个方面,从种子和芽休眠、分生细胞从静止状态中释放、根和芽的生长和结构、开花和种子生产。此外,ROS 波的光质体和植物激素依赖性传递是整合根和芽生长的系统全植物信号通路的核心。通过 PROTEOLYSIS 6 (PRT6) N 降解途径感知氧气可用性与 ROS 产生和信号传递并存,但这些途径如何在发育器官中相互作用仍知之甚少。我们在理解过氧化氢传感器的性质以及硫醇依赖信号网络在 ROS 信号传递中的作用方面取得了相当大的进展。谷胱甘肽(GSH)池、谷氧还蛋白(GRX)和硫氧还蛋白(TRX)的氧化还原(redox)变化在植物激素途径介导的生长控制中很重要。尽管很明显,参与植物生长和发育的蛋白质的氧化还原状态受细胞质、叶绿体、线粒体和细胞核中 NAD(P)H 硫氧还蛋白还原酶(NTR)/TRX 和还原型 GSH/GRX 系统控制,但我们只是触及了这个多层控制的表面以及氧化还原调节过程如何与其他细胞信号系统相互作用。

相似文献

2
Involvement of thiol-based mechanisms in plant development.基于硫醇的机制在植物发育中的作用。
Biochim Biophys Acta. 2015 Aug;1850(8):1479-96. doi: 10.1016/j.bbagen.2015.01.023. Epub 2015 Feb 9.
3
Redox regulation of plant development.植物发育的氧化还原调节
Antioxid Redox Signal. 2014 Sep 20;21(9):1305-26. doi: 10.1089/ars.2013.5665. Epub 2014 Jan 30.
9
Reactive oxygen species in plant development.植物发育中的活性氧。
Development. 2018 Aug 9;145(15):dev164376. doi: 10.1242/dev.164376.
10
ROS-related redox regulation and signaling in plants.植物中 ROS 相关的氧化还原调控和信号转导。
Semin Cell Dev Biol. 2018 Aug;80:3-12. doi: 10.1016/j.semcdb.2017.07.013. Epub 2017 Jul 18.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验