Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China, 410078.
Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
Theranostics. 2022 Mar 21;12(6):2963-2986. doi: 10.7150/thno.71064. eCollection 2022.
Many factors such as trauma and COVID-19 cause acute kidney injury (AKI). Late AKI have a very high incidence and mortality rate. Early diagnosis of AKI provides a critical therapeutic time window for AKI treatment to prevent progression to chronic renal failure. However, the current clinical detection based on creatinine and urine output isn't effective in diagnosing early AKI. In recent years, the early diagnosis of AKI has made great progress with the advancement of information technology, nanotechnology, and biomedicine. These emerging methods are mainly divided into two aspects: First, predicting AKI through models construct by machine learning; Second, early diagnosis of AKI through detection of newly-discovered early biomarkers. Currently, these methods have shown great potential and become an attractive tool for the early diagnosis of AKI. Therefore, it is very important to discuss and summarize these methods for the early diagnosis of AKI. In this review, we first systematically summarize the application of machine learning in AKI prediction algorithms and specific scenarios. In addition, we introduce the key role of early biomarkers in the progress of AKI, and then comprehensively summarize the application of emerging detection technologies for early AKI. Finally, we discuss current challenges and prospects of machine learning and biomarker detection. The review is expected to provide new insights for early diagnosis of AKI, and provided important inspiration for the design of early diagnosis of other major diseases.
许多因素,如创伤和 COVID-19,会导致急性肾损伤(AKI)。晚期 AKI 的发病率和死亡率非常高。早期诊断 AKI 为 AKI 治疗提供了关键的治疗时间窗,可防止其进展为慢性肾衰竭。然而,目前基于肌酐和尿量的临床检测并不能有效地诊断早期 AKI。近年来,随着信息技术、纳米技术和生物医学的进步,AKI 的早期诊断取得了很大进展。这些新兴方法主要分为两个方面:第一,通过机器学习构建模型预测 AKI;第二,通过检测新发现的早期生物标志物来早期诊断 AKI。目前,这些方法显示出巨大的潜力,成为 AKI 早期诊断的一种有吸引力的工具。因此,讨论和总结这些方法对于 AKI 的早期诊断非常重要。在本综述中,我们首先系统地总结了机器学习在 AKI 预测算法和具体场景中的应用。此外,我们介绍了早期生物标志物在 AKI 进展中的关键作用,然后全面总结了新兴检测技术在早期 AKI 中的应用。最后,我们讨论了机器学习和生物标志物检测的当前挑战和前景。本综述有望为 AKI 的早期诊断提供新的见解,并为其他重大疾病的早期诊断设计提供重要启示。
Theranostics. 2022
J Ayub Med Coll Abbottabad. 2019
J Thorac Cardiovasc Surg. 2017-12-22
Pract Lab Med. 2025-6-24
Bioengineering (Basel). 2025-2-8
Nat Rev Chem. 2021-6
Mater Today Bio. 2022-2-15
Mater Today Bio. 2022-2-8
Mater Today Bio. 2021-11-23