Suppr超能文献

基于集合的利用气象数据进行PM2.5浓度预测的分类方法。

Ensemble-based classification approach for PM2.5 concentration forecasting using meteorological data.

作者信息

Saminathan S, Malathy C

机构信息

Department of Computing Technologies, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.

Department of Networking and Communications, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.

出版信息

Front Big Data. 2023 Jun 9;6:1175259. doi: 10.3389/fdata.2023.1175259. eCollection 2023.

Abstract

Air pollution is a serious challenge to humankind as it poses many health threats. It can be measured using the air quality index (AQI). Air pollution is the result of contamination of both outdoor and indoor environments. The AQI is being monitored by various institutions globally. The measured air quality data are kept mostly for public use. Using the previously calculated AQI values, the future values of AQI can be predicted, or the class/category value of the numeric value can be obtained. This forecast can be performed with more accuracy using supervised machine learning methods. In this study, multiple machine-learning approaches were used to classify PM2.5 values. The values for the pollutant PM2.5 were classified into different groups using machine learning algorithms such as logistic regression, support vector machines, random forest, extreme gradient boosting, and their grid search equivalents, along with the deep learning method multilayer perceptron. After performing multiclass classification using these algorithms, the parameters accuracy and per-class accuracy were used to compare the methods. As the dataset used was imbalanced, a SMOTE-based approach for balancing the dataset was used. Compared to all other classifiers that use the original dataset, the accuracy of the random forest multiclass classifier with SMOTE-based dataset balancing was found to provide better accuracy.

摘要

空气污染对人类是一项严峻挑战,因为它带来诸多健康威胁。可使用空气质量指数(AQI)对其进行测量。空气污染是室外和室内环境受到污染的结果。全球各机构都在监测AQI。所测量的空气质量数据大多供公众使用。利用先前计算出的AQI值,可以预测AQI的未来值,或者获取数值的类别值。使用监督式机器学习方法可以更准确地进行这种预测。在本研究中,采用了多种机器学习方法对PM2.5值进行分类。利用逻辑回归、支持向量机、随机森林、极端梯度提升及其网格搜索等效方法等机器学习算法,以及深度学习方法多层感知器,将污染物PM2.5的值分类到不同组中。使用这些算法进行多类分类后,用准确率和每类准确率参数来比较这些方法。由于所使用的数据集不均衡,因此采用了基于合成少数过采样技术(SMOTE)的方法来平衡数据集。与所有其他使用原始数据集的分类器相比,发现基于SMOTE数据集平衡的随机森林多类分类器的准确率更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a006/10289837/f1763a392f4e/fdata-06-1175259-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验