Suppr超能文献

DSCnet:基于脑电图混合表征的多角度特征学习检测药物和酒精成瘾机制

DSCnet: detection of drug and alcohol addiction mechanisms based on multi-angle feature learning from the hybrid representation of EEG.

作者信息

Wu Jing, Zhang Nan, Ye Qilei, Zheng Xiaorui, Shao Minmin, Chen Xian, Huang Hui

机构信息

College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China.

Data Resources Division, Wenzhou Data Bureau, Wenzhou, China.

出版信息

Front Neurosci. 2025 Jun 18;19:1607248. doi: 10.3389/fnins.2025.1607248. eCollection 2025.

Abstract

INTRODUCTION

Drug and alcohol addiction impair neurotransmitter systems, leading to severe physiological, psychological, and social issues. Electroencephalography (EEG) is commonly used to analyze addiction mechanisms, but traditional feature extraction methods such as time-frequency analysis, Principal Component Analysis (PCA), and Independent Component Analysis (ICA) fail to capture complex relationships between variables.

METHODS

This paper proposes DSCnet, a novel neural network model for addiction detection. DSCnet combines embedding layers, skip connections, depthwise separable convolution, and our self-designed Directional Adaptive Feature Modulation (DAFM) module. DAFM is a key innovation that adaptively adjusts feature directionality, extracting global features from EEG signals while preserving spatiotemporal information. This enables the model to capture neural activity patterns related to addiction mechanisms. DSCnet uses a multi-angle feature extraction strategy, emphasizing information from various perspectives.

RESULTS

On the drug addiction dataset, DSCnet achieved 85.11% accuracy, 85.13% precision, 85.12% recall, and 85.12% F1-score. On the UCI alcohol addiction dataset, it achieved 84.56% accuracy, 84.73% precision, 84.56% recall, and 84.63% F1-score.

DISCUSSION

These results outperform existing models and demonstrate a balanced performance across both datasets, highlighting DSCnet's potential in addiction detection.

摘要

引言

药物和酒精成瘾会损害神经递质系统,导致严重的生理、心理和社会问题。脑电图(EEG)通常用于分析成瘾机制,但诸如时频分析、主成分分析(PCA)和独立成分分析(ICA)等传统特征提取方法无法捕捉变量之间的复杂关系。

方法

本文提出了DSCnet,一种用于成瘾检测的新型神经网络模型。DSCnet结合了嵌入层、跳跃连接、深度可分离卷积和我们自行设计的方向自适应特征调制(DAFM)模块。DAFM是一项关键创新,它能自适应地调整特征方向性,在保留时空信息的同时从EEG信号中提取全局特征。这使得该模型能够捕捉与成瘾机制相关的神经活动模式。DSCnet采用多角度特征提取策略,强调来自各种视角的信息。

结果

在药物成瘾数据集上,DSCnet的准确率达到85.11%,精确率达到85.13%,召回率达到85.12%,F1分数达到85.12%。在UCI酒精成瘾数据集上,它的准确率达到84.56%,精确率达到84.73%,召回率达到84.56%,F1分数达到84.63%。

讨论

这些结果优于现有模型,并在两个数据集上都展现出了平衡的性能,凸显了DSCnet在成瘾检测方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68b2/12213559/c2a41313a25c/fnins-19-1607248-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验