Suppr超能文献

短碳纤维增强聚酰胺的熔丝制造:单轴拉伸载荷下提高性能的参数优化

Fused-Filament Fabrication of Short Carbon Fiber-Reinforced Polyamide: Parameter Optimization for Improved Performance under Uniaxial Tensile Loading.

作者信息

Belei Carlos, Joeressen Jana, Amancio-Filho Sergio T

机构信息

BMK Endowed Professorship for Aviation, Institute of Materials Science, Joining and Forming, Graz University of Technology-TU Graz, Kopernikusgasse 24/1, 8010 Graz, Austria.

出版信息

Polymers (Basel). 2022 Mar 23;14(7):1292. doi: 10.3390/polym14071292.

Abstract

This study intends to contribute to the state of the art of Fused-Filament Fabrication (FFF) of short-fiber-reinforced polyamides by optimizing process parameters to improve the performance of printed parts under uniaxial tensile loading. This was performed using two different approaches: a more traditional 2k full factorial design of experiments (DoE) and multiple polynomial regression using an algorithm implementing machine learning (ML) principles such as train-test split and cross-validation. Evaluated parameters included extrusion and printing bed temperatures, layer height and printing speed. It was concluded that when exposed to new observations, the ML-based model predicted the response with higher accuracy. However, the DoE fared slightly better at predicting observations where higher response values were expected, including the optimal solution, which reached an UTS of 117.1 ± 5.7 MPa. Moreover, there was an important correlation between process parameters and the response. Layer height and printing bed temperatures were considered the most influential parameters, while extrusion temperature and printing speed had a lower influence on the outcome. The general influence of parameters on the response was correlated with the degree of interlayer cohesion, which in turn affected the mechanical performance of the 3D-printed specimens.

摘要

本研究旨在通过优化工艺参数,提高短纤维增强聚酰胺在熔融长丝制造(FFF)过程中,单轴拉伸载荷下打印部件的性能,从而为该领域的技术发展做出贡献。这是通过两种不同的方法实现的:一种是更传统的2k全因子实验设计(DoE),另一种是使用实现机器学习(ML)原理(如训练-测试分割和交叉验证)的算法进行多元多项式回归。评估的参数包括挤出温度、打印床温度、层高和打印速度。结果表明,当面对新的观测数据时,基于ML的模型能更准确地预测响应。然而,在预测预期响应值较高的观测数据(包括达到117.1±5.7 MPa的极限抗拉强度的最优解)时,DoE的表现略好。此外,工艺参数与响应之间存在重要的相关性。层高和打印床温度被认为是最具影响力的参数,而挤出温度和打印速度对结果的影响较小。参数对响应的总体影响与层间内聚力程度相关,进而影响3D打印试样的机械性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c209/9002508/6e76d3b400af/polymers-14-01292-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验