Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.
Sensors (Basel). 2022 Mar 25;22(7):2539. doi: 10.3390/s22072539.
Heart rate (HR) and respiratory rate () can be estimated by processing videos framing the upper body and face regions without any physical contact with the subject. This paper proposed a technique for continuously monitoring HR and via a multi-ROI approach based on the spectral analysis of RGB video frames recorded with a mobile device (i.e., a smartphone's camera). The respiratory signal was estimated by the motion of the chest, whereas the cardiac signal was retrieved from the pulsatile activity at the level of right and left cheeks and forehead. Videos were recorded from 18 healthy volunteers in four sessions with different user-camera distances (i.e., 0.5 m and 1.0 m) and illumination conditions (i.e., natural and artificial light). For HR estimation, three approaches were investigated based on single or multi-ROI approaches. A commercially available multiparametric device was used to record reference respiratory signals and electrocardiogram (ECG). The results demonstrated that the multi-ROI approach outperforms the single-ROI approach providing temporal trends of both the vital parameters comparable to those provided by the reference, with a mean absolute error (MAE) consistently below 1 breaths·min for in all the scenarios, and a MAE between 0.7 bpm and 6 bpm for HR estimation, whose values increase at higher distances.
心率 (HR) 和呼吸率 () 可以通过处理拍摄上半身和面部区域的视频来估计,而无需与主体进行任何物理接触。本文提出了一种技术,通过基于移动设备(即智能手机摄像头)记录的 RGB 视频帧的光谱分析,使用多感兴趣区域 (ROI) 方法来连续监测 HR 和 。呼吸信号是通过胸部的运动来估计的,而心脏信号是从右脸颊和左脸颊以及额头的脉动活动中提取的。从 18 名健康志愿者在四个不同的会话中记录了视频,这些会话具有不同的用户-相机距离(即 0.5 m 和 1.0 m)和照明条件(即自然光和人工光)。对于 HR 估计,研究了三种基于单 ROI 或多 ROI 方法的方法。使用商业上可用的多参数设备来记录参考呼吸信号和心电图 (ECG)。结果表明,多 ROI 方法优于单 ROI 方法,提供了与参考值相当的生命参数的时间趋势,在所有情况下, 的平均绝对误差 (MAE) 始终低于 1 次/分钟,HR 估计的 MAE 在 0.7 bpm 到 6 bpm 之间,当距离增加时,这些值会增加。