Suppr超能文献

拉曼差分光谱和 U-Net 卷积神经网络在皮肤神经纤维瘤的分子分析中的应用。

Raman difference spectroscopy and U-Net convolutional neural network for molecular analysis of cutaneous neurofibroma.

机构信息

Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

PLoS One. 2024 Apr 11;19(4):e0302017. doi: 10.1371/journal.pone.0302017. eCollection 2024.

Abstract

In Neurofibromatosis type 1 (NF1), peripheral nerve sheaths tumors are common, with cutaneous neurofibromas resulting in significant aesthetic, painful and functional problems requiring surgical removal. To date, determination of adequate surgical resection margins-complete tumor removal while attempting to preserve viable tissue-remains largely subjective. Thus, residual tumor extension beyond surgical margins or recurrence of the disease may frequently be observed. Here, we introduce Shifted-Excitation Raman Spectroscopy in combination with deep neural networks for the future perspective of objective, real-time diagnosis, and guided surgical ablation. The obtained results are validated through established histological methods. In this study, we evaluated the discrimination between cutaneous neurofibroma (n = 9) and adjacent physiological tissues (n = 25) in 34 surgical pathological specimens ex vivo at a total of 82 distinct measurement loci. Based on a convolutional neural network (U-Net), the mean raw Raman spectra (n = 8,200) were processed and refined, and afterwards the spectral peaks were assigned to their respective molecular origin. Principal component and linear discriminant analysis was used to discriminate cutaneous neurofibromas from physiological tissues with a sensitivity of 100%, specificity of 97.3%, and overall classification accuracy of 97.6%. The results enable the presented optical, non-invasive technique in combination with artificial intelligence as a promising candidate to ameliorate both, diagnosis and treatment of patients affected by cutaneous neurofibroma and NF1.

摘要

在神经纤维瘤病 1 型(NF1)中,周围神经鞘肿瘤很常见,皮肤神经纤维瘤会导致严重的美观、疼痛和功能问题,需要手术切除。迄今为止,确定适当的手术切除范围(在试图保留存活组织的同时完全切除肿瘤)在很大程度上仍然是主观的。因此,经常可以观察到手术边缘残留肿瘤扩展或疾病复发。在这里,我们介绍了移位激发拉曼光谱结合深度神经网络,用于未来的客观、实时诊断和引导手术消融。通过已建立的组织学方法验证了获得的结果。在这项研究中,我们在总共 82 个不同的测量点处评估了 34 个手术病理标本中 9 个皮肤神经纤维瘤(n = 9)和 25 个相邻生理组织(n = 25)之间的区分。基于卷积神经网络(U-Net),处理和细化了平均原始拉曼光谱(n = 8200),然后将光谱峰分配给它们各自的分子起源。主成分和线性判别分析用于将皮肤神经纤维瘤与生理组织区分开来,其灵敏度为 100%,特异性为 97.3%,总体分类准确率为 97.6%。这些结果使所提出的光学、非侵入性技术与人工智能相结合,成为改善受皮肤神经纤维瘤和 NF1 影响的患者的诊断和治疗的有前途的候选方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85e1/11008861/b819210028c2/pone.0302017.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验