Zhu Yu-Ke, Sun Yuxin, Zhu Jianbo, Song Kun, Liu Zihang, Liu Ming, Guo Muchun, Dong Xingyan, Guo Fengkai, Tan Xiaojian, Yu Bo, Cai Wei, Jiang Jun, Sui Jiehe
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China.
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Small. 2022 Jun;18(23):e2201352. doi: 10.1002/smll.202201352. Epub 2022 Apr 15.
Bi Te -related alloys dominate the commercial thermoelectric market, but the layered crystal structure leads to the dissociation and intrinsic brittle fracture, especially for single crystals that may worsen the practical efficiency. In this work, point defect configuration by S/Te/I defects engineering is engaged to boost thermoelectric and mechanical properties of n-type Bi Te alloy, which, coupled with p-type BiSbTe, shows a competitive conversion efficiency for the fabricated module. First, as S alloying suppresses the intrinsic antisite defects and forms a donor-like effect, electronic transport properties are optimized, associated with the decreased thermal conductivity due to the point defect scattering. The periodide compound TeI is afterward adopted to further tune carrier concentration for the realization of an optimal ZT. Finally, an advanced average ZT of 1.05 with ultra-high compressive strength of 230 MPa is achieved for Bi Te S (TeI ) . Based on this optimum composition, a fabricated 17-pair module demonstrates a maximum conversion efficiency of 5.37% under the temperature difference of 250 K, rivaling the current state-of-the-art Bi Te modules. This work reveals the novel mechanism of point defect reconfiguration in synergistic enhancement of thermoelectric and mechanical properties for durably commercial application, which may be applicable to other thermoelectric systems.
铋碲相关合金主导着商业热电市场,但层状晶体结构会导致解离和固有脆性断裂,尤其是对于单晶而言,这可能会降低实际效率。在这项工作中,通过硫/碲/碘缺陷工程来调控点缺陷构型,以提高n型铋碲合金的热电性能和机械性能,该合金与p型铋锑碲相结合,在制造的模块中显示出具有竞争力的转换效率。首先,由于硫合金化抑制了固有反位缺陷并形成类似施主的效应,电子输运性能得到优化,同时由于点缺陷散射导致热导率降低。随后采用周期碘化物化合物碲化碘进一步调节载流子浓度,以实现最佳的热电优值(ZT)。最后,对于Bi₂Te₃S₀.₅(TeI₀.₅),实现了1.05的先进平均热电优值以及230兆帕的超高抗压强度。基于这种最佳成分,制造的17对模块在250开尔文的温差下表现出5.37%的最大转换效率,可与当前最先进的铋碲模块相媲美。这项工作揭示了点缺陷重构在协同增强热电和机械性能以实现持久商业应用方面的新机制,这可能适用于其他热电系统。