CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France.
CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France.
Acta Biomater. 2022 Jun;145:342-357. doi: 10.1016/j.actbio.2022.04.015. Epub 2022 Apr 14.
In the challenging quest for a solution to reduce the risk of implant-associated infections in bone substitution surgery, the use of silver ions is promising regarding its broad spectrum on planktonic, sessile as well as multiresistant bacteria. In view of controlling its delivery in situ at the desired dose, we investigated its encapsulation in carboxymethyl cellulose (CMC) microparticles by spray-drying and included the latter in the formulation of a self-setting calcium phosphate bone cement. We implemented an original step-by-step methodology starting from the in vitro study of the antibacterial properties and cytotoxicity of two silver salts of different solubility in aqueous medium and then in the cement to determine the range of silver loading able to confer anti-biofilm and non-cytotoxic properties to the biomaterial. A dose-dependent efficiency of silver was demonstrated on the main species involved in bone-implant infection (S. aureus and S. epidermidis). Loading silver in microspheres instead of loading it directly inside the cement permitted to avoid undesired silver-cement interactions during setting and led to a faster release of silver, i.e. to a higher dose released within the first days combining anti-biofilm activity and preserved cytocompatibility. In addition, a combined interest of the introduction of about 10% (w/w) silver-loaded CMC microspheres in the cement formulation was demonstrated leading to a fully injectable and highly porous (77%) cement, showing a compressive strength analogous to cancellous bone. This injectable silver-loaded biomimetic composite cement formulation constitutes a versatile bone substitute material with tunable drug delivery properties, able to fight against bone implant associated infection. STATEMENT OF SIGNIFICANCE: This study is based on two innovative scientific aspects regarding the literature: i) Choice of silver ions as antibacterial agent combined with their way of incorporation: Carboxymethylcellulose has never been tested into bone cement to control its drug loading and release properties. ii) Methodology to formulate an antibacterial and injectable bone cement: original and multidisciplinary step-by-step methodology to first define, through (micro)biological tests on two silver salts with different solubilities, the targeted range of silver dose to include in carboxymethylcellulose microspheres and, then optimization of silver-loaded microparticles processing to fulfill requirements (encapsulation efficiency and size). The obtained fully injectable composite controls the early delivery of active dose of silver (from 3 h and over 2 weeks) able to fight against bone implant-associated infections.
在寻求减少骨替代手术中植入物相关感染风险的解决方案的过程中,银离子的使用具有广阔的前景,因为其对浮游生物、静止生物和多耐药细菌都具有广谱作用。为了控制其在所需剂量下的原位释放,我们研究了通过喷雾干燥将其封装在羧甲基纤维素(CMC)微球中的方法,并将后者纳入自凝固磷酸钙骨水泥的配方中。我们采用了一种原创的逐步方法,从研究两种在水介质中溶解度不同的银盐的体外抗菌性能和细胞毒性开始,然后在水泥中确定能够赋予生物材料抗生物膜和非细胞毒性特性的银负载范围。结果表明,银对涉及骨植入物感染的主要物种(金黄色葡萄球菌和表皮葡萄球菌)具有剂量依赖性的效率。将银负载到微球中而不是直接负载到水泥中,可以避免在凝固过程中发生不必要的银-水泥相互作用,并导致更快的银释放,即在最初几天内释放更高剂量的银,同时保持抗生物膜活性和细胞相容性。此外,还证明了在水泥配方中引入约 10%(w/w)载银 CMC 微球的组合优势,从而得到一种完全可注射和高度多孔(77%)的水泥,其抗压强度与松质骨相当。这种可注射的载银仿生复合材料水泥配方构成了一种具有可调节药物输送性能的多功能骨替代材料,能够对抗骨植入物相关感染。
本研究基于两个创新的科学方面:i)选择银离子作为抗菌剂,结合其掺入方式:羧甲基纤维素从未被测试过用于骨水泥来控制其药物负载和释放特性。ii)制定抗菌和可注射骨水泥的方法:通过对两种具有不同溶解度的银盐进行微生物测试,首先定义一个原始的、多学科的逐步方法,确定包含在羧甲基纤维素微球中的银剂量目标范围,然后优化载银微球处理以满足要求(包封效率和粒径)。所得到的完全可注射的复合材料控制着早期释放活性剂量的银(从 3 小时开始,持续 2 周以上),能够对抗骨植入物相关感染。