Zhu Y, Lin E C
J Bacteriol. 1987 Feb;169(2):785-9. doi: 10.1128/jb.169.2.785-789.1987.
Escherichia coli K-12 converts L-fucose to dihydroxyacetone phosphate (C-1 to C-3) and L-lactaldehyde (C-4 to C-6) by a pathway specified by the fuc regulon. Aerobically, L-lactaldehyde serves as a carbon and energy source by the action of an aldehyde dehydrogenase of broad specificity; the product, L-lactate, is then converted to pyruvate. Anaerobically, L-lactaldehyde serves as an electron acceptor to regenerate NAD from NADH by the action of an oxidoreductase; the reduced product, L-12-propanediol, is excreted. A strain selected for growth on L-galactose (a structural analog of L-fucose) acquired a broadened inducer specificity because of an altered fucR gene encoding the activator protein for the fuc regulon (Y. Zhu and E. C. C. Lin, J. Mol. Evol. 23:259-266, 1986). In this study, a second mutation that abolished aldehyde dehydrogenase activity was discovered. The L-fucose pathway converts L-galactose to dihydroxyacetone phosphate and L-glyceraldehyde. Aldehyde dehydrogenase then converts L-glyceraldehyde to L-glycerate, which is toxic. Loss of the dehydrogenase averts the toxicity during growth on L-galactose, but reduces by one-half the aerobic growth yield on L-fucose. When mutant cells induced in the L-fucose system were incubated with radioactive L-fucose, accumulation of radioactivity occurred if the substrate was labeled at C-1 but not if it was labeled C-6. Complete aerobic utilization of carbons 4 through 6 of L-fucose depends not only on an adequate activity of aldehyde dehydrogenase to trap L-lactaldehyde as its anionic acid but also on the lack of L-1,2-propanediol oxidoreductase activity, which converts L-lactaldehyde to a readily excreted alcohol.
大肠杆菌K-12通过岩藻糖操纵子指定的途径将L-岩藻糖转化为磷酸二羟丙酮(C-1至C-3)和L-乳醛(C-4至C-6)。在有氧条件下,L-乳醛通过一种具有广泛特异性的醛脱氢酶的作用作为碳源和能源;产物L-乳酸随后转化为丙酮酸。在厌氧条件下,L-乳醛作为电子受体,通过氧化还原酶的作用从NADH再生NAD;还原产物L-1,2-丙二醇被分泌出来。一株被选择在L-半乳糖(L-岩藻糖的结构类似物)上生长的菌株由于编码岩藻糖操纵子激活蛋白的fucR基因发生改变而获得了更广泛的诱导物特异性(Y. Zhu和E. C. C. Lin,《分子进化杂志》23:259 - 266,1986年)。在本研究中,发现了第二个使醛脱氢酶活性丧失的突变。L-岩藻糖途径将L-半乳糖转化为磷酸二羟丙酮和L-甘油醛。醛脱氢酶然后将L-甘油醛转化为有毒的L-甘油酸。脱氢酶的缺失避免了在L-半乳糖上生长期间的毒性,但使在L-岩藻糖上的有氧生长产量降低了一半。当在L-岩藻糖系统中诱导的突变细胞与放射性L-岩藻糖一起孵育时,如果底物在C-1处被标记则会发生放射性积累,但如果在C-6处被标记则不会。L-岩藻糖的碳4至6的完全有氧利用不仅取决于醛脱氢酶将L-乳醛捕获为其阴离子酸的足够活性,还取决于缺乏将L-乳醛转化为易于分泌的醇的L-1,2-丙二醇氧化还原酶活性。