Suppr超能文献

鼠李糖对大肠杆菌中L-岩藻糖系统的交叉诱导作用。

Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli.

作者信息

Chen Y M, Tobin J F, Zhu Y, Schleif R F, Lin E C

出版信息

J Bacteriol. 1987 Aug;169(8):3712-9. doi: 10.1128/jb.169.8.3712-3719.1987.

Abstract

Dissimilation of L-fucose as a carbon and energy source by Escherichia coli involves a permease, an isomerase, a kinase, and an aldolase encoded by the fuc regulon at minute 60.2. Utilization of L-rhamnose involves a similar set of proteins encoded by the rha operon at minute 87.7. Both pathways lead to the formation of L-lactaldehyde and dihydroxyacetone phosphate. A common NAD-linked oxidoreductase encoded by fucO serves to reduce L-lactaldehyde to L-1,2-propanediol under anaerobic growth conditions, irrespective of whether the aldehyde is derived from fucose or rhamnose. In this study it was shown that anaerobic growth on rhamnose induces expression of not only the fucO gene but also the entire fuc regulon. Rhamnose is unable to induce the fuc genes in mutants defective in rhaA (encoding L-rhamnose isomerase), rhaB (encoding L-rhamnulose kinase), rhaD (encoding L-rhamnulose 1-phosphate aldolase), rhaR (encoding the positive regulator for the rha structural genes), or fucR (encoding the positive for the fuc regulon). Thus, cross-induction of the L-fucose enzymes by rhamnose requires formation of L-lactaldehyde; either the aldehyde itself or the L-fuculose 1-phosphate (known to be an effector) formed from it then interacts with the fucR-encoded protein to induce the fuc regulon.

摘要

大肠杆菌将L-岩藻糖作为碳源和能源进行异化作用,涉及到位于60.2分钟处的岩藻糖操纵子编码的一种通透酶、一种异构酶、一种激酶和一种醛缩酶。利用L-鼠李糖涉及到位于87.7分钟处的鼠李糖操纵子编码的一组类似蛋白质。这两条途径都导致L-乳醛和磷酸二羟丙酮的形成。由fucO编码的一种常见的NAD连接氧化还原酶,在厌氧生长条件下可将L-乳醛还原为L-1,2-丙二醇,而不管醛是来自岩藻糖还是鼠李糖。在本研究中表明,在鼠李糖上进行厌氧生长不仅会诱导fucO基因的表达,还会诱导整个岩藻糖操纵子的表达。鼠李糖无法在rhaA(编码L-鼠李糖异构酶)、rhaB(编码L-鼠李酮糖激酶)、rhaD(编码L-鼠李酮糖1-磷酸醛缩酶)、rhaR(编码鼠李糖结构基因的正调控因子)或fucR(编码岩藻糖操纵子的正调控因子)缺陷的突变体中诱导岩藻糖基因的表达。因此,鼠李糖对L-岩藻糖酶的交叉诱导需要形成L-乳醛;醛本身或由其形成的L-岩藻酮糖1-磷酸(已知是一种效应物)随后与fucR编码的蛋白质相互作用以诱导岩藻糖操纵子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4296/212456/22e3f6060a42/jbacter00198-0333-a.jpg

相似文献

1
Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli.
J Bacteriol. 1987 Aug;169(8):3712-9. doi: 10.1128/jb.169.8.3712-3719.1987.
2
A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.
J Bacteriol. 1988 May;170(5):2352-8. doi: 10.1128/jb.170.5.2352-2358.1988.
4
Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli.
J Bacteriol. 1984 Mar;157(3):828-32. doi: 10.1128/jb.157.3.828-832.1984.
5
NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli.
J Bacteriol. 1987 Jul;169(7):3289-94. doi: 10.1128/jb.169.7.3289-3294.1987.
7
Constitutive activation of L-fucose genes by an unlinked mutation in Escherichia coli.
J Bacteriol. 1984 Aug;159(2):725-9. doi: 10.1128/jb.159.2.725-729.1984.
10

引用本文的文献

1
Convergent evolution of distinct D-ribulose utilisation pathways in attaching and effacing pathogens.
Nat Commun. 2025 Jul 29;16(1):6976. doi: 10.1038/s41467-025-62476-5.
2
Novel aspects of ethylene glycol catabolism.
Appl Microbiol Biotechnol. 2024 Jun 11;108(1):369. doi: 10.1007/s00253-024-13179-2.
3
Developing a Fluorescent Inducible System for Free Fucose Quantification in .
Biosensors (Basel). 2023 Mar 15;13(3):388. doi: 10.3390/bios13030388.
6
Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.
PLoS One. 2016 Jun 7;11(6):e0156796. doi: 10.1371/journal.pone.0156796. eCollection 2016.
7
Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans.
PLoS One. 2013;8(1):e54337. doi: 10.1371/journal.pone.0054337. Epub 2013 Jan 28.
8
Fucose sensing regulates bacterial intestinal colonization.
Nature. 2012 Dec 6;492(7427):113-7. doi: 10.1038/nature11623. Epub 2012 Nov 18.
10
Regulation of arabinose and xylose metabolism in Escherichia coli.
Appl Environ Microbiol. 2010 Mar;76(5):1524-32. doi: 10.1128/AEM.01970-09. Epub 2009 Dec 18.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
A method for isolating constitutive mutants for carbohydrate-catabolizing enzymes.
Biochim Biophys Acta. 1962 Jul 2;60:422-4. doi: 10.1016/0006-3002(62)90423-7.
3
SUBSTRATE SPECIFICITY OF L-RHAMNULOSE 1-PHOSPHATE ADOLASE.
Biochem Biophys Res Commun. 1965 May 3;19:511-6. doi: 10.1016/0006-291x(65)90155-5.
4
THE PURIFICATION AND PROPERTIES OF L-RHAMNULOKINASE.
Biochim Biophys Acta. 1964 Dec 23;92:489-97. doi: 10.1016/0926-6569(64)90009-4.
5
THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. 3. L-RHAMULOSE-PHOSPHATE ALDOLASE.
Biochim Biophys Acta. 1964 Oct 23;92:26-32. doi: 10.1016/0926-6569(64)90265-2.
6
THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. II. L-RHAMNULOSE KINASE.
Biochim Biophys Acta. 1964 Oct 23;92:18-25. doi: 10.1016/0926-6569(64)90264-0.
7
THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. I. L-RHAMNOSE ISOMERASE.
Biochim Biophys Acta. 1964 Oct 23;92:10-7. doi: 10.1016/0926-6569(64)90263-9.
8
VIRULENCE OF ESCHERICHIA-SHIGELLA GENETIC HYBRIDS FOR THE GUINEA PIG.
J Bacteriol. 1963 Dec;86(6):1251-8. doi: 10.1128/jb.86.6.1251-1258.1963.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验