Suppr超能文献

大肠杆菌用于需氧利用L-岩藻糖和L-鼠李糖的NAD连接醛脱氢酶。

NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli.

作者信息

Chen Y M, Zhu Y, Lin E C

出版信息

J Bacteriol. 1987 Jul;169(7):3289-94. doi: 10.1128/jb.169.7.3289-3294.1987.

Abstract

Mutant analysis revealed that complete utilization of L-fucose and L-rhamnose by Escherichia coli requires the activity of a common NAD-linked aldehyde dehydrogenase which converts L-lactaldehyde to L-lactate. Mutations affecting this activity mapped to the ald locus at min 31, well apart from the fuc genes (min 60) encoding the trunk pathway for L-fucose dissimilation (as well as L-1,2-propanediol oxidoreductase) and the rha genes (min 88) encoding the trunk pathway for L-rhamnose dissimilation. Mutants that grow on L-1,2-propanediol as a carbon and energy source also depend on the ald gene product for the conversion of L-lactaldehyde to L-lactate.

摘要

突变分析表明,大肠杆菌对L-岩藻糖和L-鼠李糖的完全利用需要一种常见的NAD连接的醛脱氢酶的活性,该酶将L-乳醛转化为L-乳酸。影响该活性的突变定位于31分钟处的ald位点,与编码L-岩藻糖异化主干途径(以及L-1,2-丙二醇氧化还原酶)的fuc基因(60分钟处)和编码L-鼠李糖异化主干途径的rha基因(88分钟处)相距甚远。以L-1,2-丙二醇作为碳源和能源生长的突变体也依赖ald基因产物将L-乳醛转化为L-乳酸。

相似文献

1
NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli.
J Bacteriol. 1987 Jul;169(7):3289-94. doi: 10.1128/jb.169.7.3289-3294.1987.
3
Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli.
J Bacteriol. 1987 Aug;169(8):3712-9. doi: 10.1128/jb.169.8.3712-3719.1987.
5
Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli.
J Bacteriol. 1984 Mar;157(3):828-32. doi: 10.1128/jb.157.3.828-832.1984.
6

引用本文的文献

2
Human xenobiotic metabolism proteins have full-length and split homologs in the gut microbiome.
bioRxiv. 2024 Nov 8:2024.11.06.622278. doi: 10.1101/2024.11.06.622278.
3
Pathogenomic analysis and characterization of strains recovered from human infections.
Microbiol Spectr. 2024 Apr 2;12(4):e0380523. doi: 10.1128/spectrum.03805-23. Epub 2024 Mar 1.
4
Functional annotation of Candida albicans hypothetical proteins: a bioinformatics approach.
Arch Microbiol. 2024 Feb 23;206(3):118. doi: 10.1007/s00203-024-03840-9.
5
Gut Microbiome Activity Contributes to Prediction of Individual Variation in Glycemic Response in Adults.
Diabetes Ther. 2022 Jan;13(1):89-111. doi: 10.1007/s13300-021-01174-z. Epub 2021 Nov 19.
6
Bacterial Responses to Glyoxal and Methylglyoxal: Reactive Electrophilic Species.
Int J Mol Sci. 2017 Jan 17;18(1):169. doi: 10.3390/ijms18010169.
7
Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.
PLoS One. 2016 Jun 7;11(6):e0156796. doi: 10.1371/journal.pone.0156796. eCollection 2016.
8
An L-Fucose Operon in the Probiotic Lactobacillus rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions.
Appl Environ Microbiol. 2015 Jun;81(11):3880-8. doi: 10.1128/AEM.00260-15. Epub 2015 Mar 27.
9
Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni.
J Bacteriol. 2011 Mar;193(5):1065-75. doi: 10.1128/JB.01252-10. Epub 2010 Dec 30.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
VIRULENCE OF ESCHERICHIA-SHIGELLA GENETIC HYBRIDS FOR THE GUINEA PIG.
J Bacteriol. 1963 Dec;86(6):1251-8. doi: 10.1128/jb.86.6.1251-1258.1963.
5
6
7
Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli.
J Bacteriol. 1984 Mar;157(3):828-32. doi: 10.1128/jb.157.3.828-832.1984.
9
Constitutive activation of L-fucose genes by an unlinked mutation in Escherichia coli.
J Bacteriol. 1984 Aug;159(2):725-9. doi: 10.1128/jb.159.2.725-729.1984.
10
Linkage map of Escherichia coli K-12, edition 7.
Microbiol Rev. 1983 Jun;47(2):180-230. doi: 10.1128/mr.47.2.180-230.1983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验