文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Immunomodulatory effects of the polysaccharide from on RAW264.7 macrophage cells.

作者信息

Liu Zhidong, Liu Zhifang, Li Laihao, Zhang Junjie, Zhao Qiancheng, Lin Na, Zhong Wenzhu, Jiang Mei

机构信息

East China Sea Fishery Research Institute Chinese Academy of Fishery Sciences Shanghai China.

South China Sea Fishery Research Institute Chinese Academy of Fishery Sciences Guangzhou China.

出版信息

Food Sci Nutr. 2022 Jan 25;10(4):1093-1102. doi: 10.1002/fsn3.2735. eCollection 2022 Apr.


DOI:10.1002/fsn3.2735
PMID:35432971
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9007286/
Abstract

This study aimed to evaluate the immunomodulatory effect of the polysaccharide from (SCP-1-1) in RAW264.7 cells. SCP-1-1 with a molecular weight of 440.0 kDa consisted of glucose and mannose. The immunomodulatory assay results showed that SCP-1-1 could significantly enhance phagocytic ability, NO production, and some cytokines (TNF-α, IL-6, and IL-1β) secretion of RAW264.7 cell in a dose-dependent manner. Western blot analysis results demonstrated that SCP-1-1 could regulate the expression levels of the key proteins in the signaling pathways of RAW264.7 cell and might associated with NF-κβ and PI3K signaling pathway. These findings could contribute to elucidate the immunomodulatory activities of the polysaccharide from .

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/9f44274370ba/FSN3-10-1093-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/613db1f770bd/FSN3-10-1093-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/3dbfaee2ca62/FSN3-10-1093-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/3258eb36b199/FSN3-10-1093-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/52f32f563f78/FSN3-10-1093-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/e2832ca2af86/FSN3-10-1093-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/be813e197bdf/FSN3-10-1093-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/bbefc817881a/FSN3-10-1093-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/4a5aa167950f/FSN3-10-1093-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/3f3eeed303cb/FSN3-10-1093-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/9f44274370ba/FSN3-10-1093-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/613db1f770bd/FSN3-10-1093-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/3dbfaee2ca62/FSN3-10-1093-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/3258eb36b199/FSN3-10-1093-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/52f32f563f78/FSN3-10-1093-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/e2832ca2af86/FSN3-10-1093-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/be813e197bdf/FSN3-10-1093-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/bbefc817881a/FSN3-10-1093-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/4a5aa167950f/FSN3-10-1093-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/3f3eeed303cb/FSN3-10-1093-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/9007286/9f44274370ba/FSN3-10-1093-g006.jpg

相似文献

[1]
Immunomodulatory effects of the polysaccharide from on RAW264.7 macrophage cells.

Food Sci Nutr. 2022-1-25

[2]
Structural Characterization and Immunostimulatory Activity of a Homogeneous Polysaccharide from Sinonovacula constricta.

J Agric Food Chem. 2015-9-4

[3]
A mild and efficient extraction method for polysaccharides from Sinonovacula constricta and study of their structural characteristic and antioxidant activities.

Int J Biol Macromol. 2019-10-31

[4]
Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages.

Carbohydr Polym. 2017-7-5

[5]
Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3k/Akt and NF-κB signaling pathways in RAW264.7 cells.

Food Funct. 2017-3-22

[6]
Coccomyxa Gloeobotrydiformis Polysaccharide Inhibits Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophages.

Cell Physiol Biochem. 2018

[7]
Sulfated heteropolysaccharides from : Structural characterization and transcript-metabolite profiling of immunostimulatory effects on RAW264.7 cells.

Food Chem X. 2022-2-9

[8]
Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms.

Carbohydr Polym. 2015-1-3

[9]
Effects of neutral polysaccharide on immune activity TLR4-mediated MyD88-dependent and independent signaling pathways in RAW264.7 macrophages.

Front Nutr. 2022-9-14

[10]
Immunomodulating activity of the polysaccharide TLH-3 from Tricholomalobayense in RAW264.7 macrophages.

Int J Biol Macromol. 2017-11-16

引用本文的文献

[1]
Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed : Computational and Experimental Evidences.

Mar Drugs. 2024-2-11

[2]
A novel heteropolysaccharide isolated from custard apple pulp and its immunomodulatory activity in mouse macrophages and dendritic cells.

Heliyon. 2023-7-23

[3]
Thioredoxin A of Streptococcus suis Serotype 2 Contributes to Virulence by Inhibiting the Expression of Pentraxin 3 to Promote Survival Within Macrophages.

J Microbiol. 2023-4

[4]
Three-phase extraction of polysaccharide from : Process optimization, structural characterization and bioactivities.

Front Immunol. 2022

[5]
Piperine Derived from L. Inhibits LPS-Induced Inflammatory through the MAPK and NF-κB Signalling Pathways in RAW264.7 Cells.

Foods. 2022-9-26

[6]
The Main Structural Unit Elucidation and Immunomodulatory Activity In Vitro of a Selenium-Enriched Polysaccharide Produced by .

Molecules. 2022-4-18

本文引用的文献

[1]
Structural characterization and mechanisms of macrophage immunomodulatory activity of a pectic polysaccharide from Cucurbita moschata Duch.

Carbohydr Polym. 2021-10-1

[2]
Structural characterization and anti-inflammatory activity of a polysaccharide from the lignified okra.

Carbohydr Polym. 2021-8-1

[3]
Fractionation, structural characteristics and immunomodulatory activity of polysaccharide fractions from asparagus (Asparagus officinalis L.) skin.

Carbohydr Polym. 2021-3-15

[4]
Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis.

Carbohydr Polym. 2021-1-1

[5]
Hypolipidemic and anti-atherogenic activities of crude polysaccharides from abalone viscera.

Food Sci Nutr. 2020-4-20

[6]
Structural Features of Three Hetero-Galacturonans from Fruits and Their in Vitro Immunomodulatory Effects.

Polymers (Basel). 2020-3-8

[7]
Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley.

Carbohydr Polym. 2020-2-10

[8]
A novel polysaccharide from the roots of Millettia Speciosa Champ: preparation, structural characterization and immunomodulatory activity.

Int J Biol Macromol. 2019-12-28

[9]
Structural characterization and immunomodulatory activity of a novel polysaccharide from Pueraria lobata (Willd.) Ohwi root.

Int J Biol Macromol. 2020-7-1

[10]
A mild and efficient extraction method for polysaccharides from Sinonovacula constricta and study of their structural characteristic and antioxidant activities.

Int J Biol Macromol. 2019-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索