Suppr超能文献

未受干扰的隔离使我们能够针对肿瘤组织中肿瘤细胞衍生的细胞外囊泡进行靶向功能分析。

Untouched isolation enables targeted functional analysis of tumour-cell-derived extracellular vesicles from tumour tissues.

机构信息

The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

出版信息

J Extracell Vesicles. 2022 Apr;11(4):e12214. doi: 10.1002/jev2.12214.

Abstract

To accurately identify the functions of tumour-cell-derived extracellular vesicles (T-EVs), EVs directly isolated from tumour tissues are much preferred over those derived from in vitro cultured tumour cell lines. However, the functional analysis of T-EVs has still been severely limited by the difficulty in selective isolation of T-EVs from tissue-derived heterogeneous EVs, which also contain non-tumour cell-derived EVs. We here establish an untouched isolation strategy that specifically collects natural T-EVs from tumour tissues by removing non-tumour-cell-derived EVs. Different from traditional immunomagnetic separation, our isolation materials are directly bound to undesired non-tumour-cell-derived EVs, preserving the natural properties of T-EVs. Using this strategy, we reveal the distinct performances of tissue-derived T-EVs in organotropism to lymph nodes, immunosuppression and angiogenesis. The present work, which takes an extraordinary step forward in the isolation of EV subpopulation from tumour tissues, would dramatically accelerate the investigation of EV heterogeneity.

摘要

为了准确鉴定肿瘤细胞衍生的细胞外囊泡(T-EV)的功能,直接从肿瘤组织中分离的 EV 比从体外培养的肿瘤细胞系中分离的 EV 更受青睐。然而,由于从组织来源的异质 EV 中选择性分离 T-EV 仍然非常困难,其中还包含非肿瘤细胞衍生的 EV,因此 T-EV 的功能分析仍然受到严重限制。我们在此建立了一种未经处理的分离策略,通过去除非肿瘤细胞衍生的 EV,特异性地从肿瘤组织中收集天然 T-EV。与传统的免疫磁珠分离不同,我们的分离材料直接与不需要的非肿瘤细胞衍生的 EV 结合,保留了 T-EV 的天然特性。利用该策略,我们揭示了组织来源的 T-EV 在向淋巴结的器官趋向性、免疫抑制和血管生成方面的不同性能。本研究在从肿瘤组织中分离 EV 亚群方面迈出了非凡的一步,将极大地促进 EV 异质性的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f54e/9014807/048ec57d1b94/JEV2-11-e12214-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验