Suppr超能文献

切向流微滤法用于分离、选择性捕获和释放脂肪肉瘤细胞外囊泡。

Cross-flow microfiltration for isolation, selective capture and release of liposarcoma extracellular vesicles.

机构信息

Comprehensive Cancer Center The Ohio State University Columbus Ohio USA.

Department of Mechanical and Aerospace Engineering The Ohio State University Columbus Ohio USA.

出版信息

J Extracell Vesicles. 2021 Feb;10(4):e12062. doi: 10.1002/jev2.12062. Epub 2021 Feb 16.

Abstract

We present a resource-efficient approach to fabricate and operate a micro-nanofluidic device that uses cross-flow filtration to isolate and capture liposarcoma derived extracellular vesicles (EVs). The isolated extracellular vesicles were captured using EV-specific protein markers to obtain vesicle enriched media, which was then eluted for further analysis. Therefore, the micro-nanofluidic device integrates the unit operations of size-based separation with CD63 antibody immunoaffinity-based capture of extracellular vesicles in the same device to evaluate EV-cargo content for liposarcoma. The eluted media collected showed ∼76% extracellular vesicle recovery from the liposarcoma cell conditioned media and ∼32% extracellular vesicle recovery from dedifferentiated liposarcoma patient serum when compared against state-of-art extracellular vesicle isolation and subsequent quantification by ultracentrifugation. The results reported here also show a five-fold increase in amount of critical liposarcoma-relevant extracellular vesicle cargo obtained in 30 min presenting a significant advance over existing state-of-art.

摘要

我们提出了一种资源高效的方法来制造和操作微纳流控装置,该装置使用横流过滤来分离和捕获脂肪肉瘤衍生的细胞外囊泡(EVs)。使用 EV 特异性蛋白标记物捕获分离的细胞外囊泡,以获得富含囊泡的培养基,然后对其进行洗脱以进行进一步分析。因此,微纳流控装置将基于尺寸的分离单元操作与 CD63 抗体免疫亲和捕获细胞外囊泡集成在同一装置中,以评估脂肪肉瘤的 EV 货物含量。与超离心法等先进的细胞外囊泡分离和后续定量方法相比,从脂肪肉瘤细胞条件培养基中洗脱收集的培养基中可回收约 76%的细胞外囊泡,从去分化脂肪肉瘤患者血清中可回收约 32%的细胞外囊泡。这里报道的结果还表明,在 30 分钟内获得的关键脂肪肉瘤相关细胞外囊泡货物量增加了五倍,这是现有技术的重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063e/7887429/0fffa1460777/JEV2-10-e12062-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验