Suppr超能文献

个体随机试验中协变量调整方法的规划:实用指南。

Planning a method for covariate adjustment in individually randomised trials: a practical guide.

作者信息

Morris Tim P, Walker A Sarah, Williamson Elizabeth J, White Ian R

机构信息

MRC Clinical Trials Unit at UCL, London, UK.

Department of Medical Statistics, LSHTM, London, UK.

出版信息

Trials. 2022 Apr 18;23(1):328. doi: 10.1186/s13063-022-06097-z.

Abstract

BACKGROUND

It has long been advised to account for baseline covariates in the analysis of confirmatory randomised trials, with the main statistical justifications being that this increases power and, when a randomisation scheme balanced covariates, permits a valid estimate of experimental error. There are various methods available to account for covariates but it is not clear how to choose among them.

METHODS

Taking the perspective of writing a statistical analysis plan, we consider how to choose between the three most promising broad approaches: direct adjustment, standardisation and inverse-probability-of-treatment weighting.

RESULTS

The three approaches are similar in being asymptotically efficient, in losing efficiency with mis-specified covariate functions and in handling designed balance. If a marginal estimand is targeted (for example, a risk difference or survival difference), then direct adjustment should be avoided because it involves fitting non-standard models that are subject to convergence issues. Convergence is most likely with IPTW. Robust standard errors used by IPTW are anti-conservative at small sample sizes. All approaches can use similar methods to handle missing covariate data. With missing outcome data, each method has its own way to estimate a treatment effect in the all-randomised population. We illustrate some issues in a reanalysis of GetTested, a randomised trial designed to assess the effectiveness of an electonic sexually transmitted infection testing and results service.

CONCLUSIONS

No single approach is always best: the choice will depend on the trial context. We encourage trialists to consider all three methods more routinely.

摘要

背景

长期以来,在确证性随机试验的分析中一直建议考虑基线协变量,主要的统计学依据是这会提高检验效能,并且当随机化方案使协变量平衡时,能够对实验误差进行有效估计。有多种方法可用于考虑协变量,但尚不清楚如何在它们之间进行选择。

方法

从撰写统计分析计划的角度出发,我们考虑如何在三种最有前景的主要方法之间进行选择:直接调整、标准化和治疗逆概率加权。

结果

这三种方法在渐近效率、因协变量函数指定错误而导致效率损失以及处理设计平衡方面相似。如果目标是边际估计量(例如,风险差或生存差),则应避免直接调整,因为它涉及拟合存在收敛问题的非标准模型。IPTW最有可能实现收敛。IPTW使用的稳健标准误在小样本量时是反保守的。所有方法都可以使用类似的方法来处理协变量数据缺失的情况。对于结局数据缺失的情况,每种方法都有自己在所有随机分组人群中估计治疗效果的方式。我们在对GetTested(一项旨在评估电子性传播感染检测及结果服务有效性的随机试验)的重新分析中阐述了一些问题。

结论

没有一种方法总是最佳的:选择将取决于试验背景。我们鼓励试验者更常规地考虑所有这三种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/915e/9014627/16907c0e00eb/13063_2022_6097_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验