Suppr超能文献

识别成年高医疗费用使用者亚组:一项回顾性分析。

Identifying subgroups of adult high-cost health care users: a retrospective analysis.

机构信息

Department of Medicine (Wick, Campbell, Manns, Tonelli), Cumming School of Medicine; Department of Community Health Sciences (Campbell, Manns, Tonelli, Beall, Stewart, Ronksley), Cumming School of Medicine; Division of General Internal Medicine, Department of Medicine (McAlister); Department of Medicine, Faculty of Medicine & Dentistry (Hemmelgarn), University of Alberta, Edmonton, Alta.

出版信息

CMAJ Open. 2022 Apr 19;10(2):E390-E399. doi: 10.9778/cmajo.20210265. Print 2022 Apr-Jun.

Abstract

BACKGROUND

Few studies have categorized high-cost patients (defined by accumulated health care spending above a predetermined percentile) into distinctive groups for which potentially actionable interventions may improve outcomes and reduce costs. We sought to identify homogeneous groups within the persistently high-cost population to develop a taxonomy of subgroups that may be targetable with specific interventions.

METHODS

We conducted a retrospective analysis in which we identified adults (≥ 18 yr) who lived in Alberta between April 2014 and March 2019. We defined "persistently high-cost users" as those in the top 1% of health care spending across 4 data sources (the Discharge Abstract Database for inpatient encounters; Practitioner Claims for outpatient primary care and specialist encounters; the Ambulatory Care Classification System for emergency department encounters; and the Pharmaceutical Information Network for medication use) in at least 2 consecutive fiscal years. We used latent class analysis and expert clinical opinion in tandem to separate the persistently high-cost population into subgroups that may be targeted by specific interventions based on their distinctive clinical profiles and the drivers of their health system use and costs.

RESULTS

Of the 3 919 388 adults who lived in Alberta for at least 2 consecutive fiscal years during the study period, 21 115 (0.5%) were persistently high-cost users. We identified 9 subgroups in this population: people with cardiovascular disease ( = 4537; 21.5%); people receiving rehabilitation after surgery or recovering from complications of surgery ( = 3380; 16.0%); people with severe mental health conditions ( = 3060; 14.5%); people with advanced chronic kidney disease ( = 2689; 12.7%); people receiving biologic therapies for autoimmune conditions ( = 2538; 12.0%); people with dementia and awaiting community placement ( = 2520; 11.9%); people with chronic obstructive pulmonary disease or other respiratory conditions ( = 984; 4.7%); people receiving treatment for cancer ( = 832; 3.9%); and people with unstable housing situations or substance use disorders ( = 575; 2.7%).

INTERPRETATION

Using latent class analysis supplemented with expert clinical review, we identified 9 policy-relevant subgroups among persistently high-cost health care users. This taxonomy may be used to inform policy, including identifying interventions that are most likely to improve care and reduce cost for each subgroup.

摘要

背景

很少有研究将高成本患者(定义为累计医疗保健支出超过预定百分位数的患者)分为具有潜在可操作性的干预措施可能改善结局并降低成本的不同组。我们试图在持续高成本人群中找到同质的组,以建立一个可能针对特定干预措施的亚组分类法。

方法

我们进行了一项回顾性分析,其中我们确定了 2014 年 4 月至 2019 年 3 月期间居住在艾伯塔省的成年人(≥18 岁)。我们将“持续高成本使用者”定义为在至少 2 个连续财政年度内,在 4 个数据源(住院患者的出院摘要数据库;门诊初级保健和专科就诊的医生索赔;急诊的门诊护理分类系统;药物使用的药剂学信息网络)中医疗保健支出处于前 1%的人群。我们使用潜在类别分析和专家临床意见相结合,根据其独特的临床特征和卫生系统使用和成本的驱动因素,将持续高成本人群分为可能针对特定干预措施的亚组。

结果

在研究期间居住在艾伯塔省至少 2 个连续财政年度的 3919388 名成年人中,有 21115 人(0.5%)是持续高成本使用者。我们在该人群中发现了 9 个亚组:患有心血管疾病的人(=4537;21.5%);接受手术后康复或手术并发症康复的人(=3380;16.0%);患有严重精神健康状况的人(=3060;14.5%);患有晚期慢性肾脏疾病的人(=2689;12.7%);接受生物疗法治疗自身免疫性疾病的人(=2538;12.0%);患有痴呆症并等待社区安置的人(=2520;11.9%);患有慢性阻塞性肺疾病或其他呼吸系统疾病的人(=984;4.7%);接受癌症治疗的人(=832;3.9%);以及住房不稳定或有物质使用障碍的人(=575;2.7%)。

解释

使用潜在类别分析辅以专家临床审查,我们在持续高成本医疗保健使用者中确定了 9 个具有政策相关性的亚组。该分类法可用于为政策提供信息,包括确定最有可能改善每个亚组的护理并降低成本的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d9a/9022936/0ec4526a4efa/cmajo.20210265f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验