Suppr超能文献

我们何时需要进行大规模计算来执行详细的新冠病毒模拟?

When Do We Need Massive Computations to Perform Detailed COVID-19 Simulations?

作者信息

Lutz Christopher B, Giabbanelli Philippe J

机构信息

Department of Computer Science & Software Engineering Miami University 205 Benton Hall Oxford OH 45056 USA.

出版信息

Adv Theory Simul. 2022 Feb;5(2):2100343. doi: 10.1002/adts.202100343. Epub 2021 Nov 23.

Abstract

The COVID-19 pandemic has infected over 250 million people worldwide and killed more than 5 million as of November 2021. Many intervention strategies are utilized (e.g., masks, social distancing, vaccinations), but officials making decisions have a limited time to act. Computer simulations can aid them by predicting future disease outcomes, but they also require significant processing power or time. It is examined whether a machine learning model can be trained on a small subset of simulation runs to inexpensively predict future disease trajectories resembling the original simulation results. Using four previously published agent-based models (ABMs) for COVID-19, a decision tree regression for each ABM is built and its predictions are compared to the corresponding ABM. Accurate machine learning meta-models are generated from ABMs without strong interventions (e.g., vaccines, lockdowns) using small amounts of simulation data: the root-mean-square error (RMSE) with 25% of the data is close to the RMSE for the full dataset (0.15 vs 0.14 in one model; 0.07 vs 0.06 in another). However, meta-models for ABMs employing strong interventions require much more training data (at least 60%) to achieve a similar accuracy. In conclusion, machine learning meta-models can be used in some scenarios to assist in faster decision-making.

摘要

截至2021年11月,新冠疫情已在全球感染超过2.5亿人,造成500多万人死亡。人们采用了许多干预策略(如戴口罩、保持社交距离、接种疫苗),但决策者采取行动的时间有限。计算机模拟可以通过预测未来疾病结果来帮助他们,但这也需要强大的处理能力或大量时间。本文研究了是否可以在一小部分模拟运行数据上训练机器学习模型,以便以低成本预测类似于原始模拟结果的未来疾病轨迹。使用四个先前发表的基于代理的新冠疫情模型(ABM),为每个ABM构建决策树回归模型,并将其预测结果与相应的ABM进行比较。利用少量模拟数据,从没有强力干预措施(如疫苗接种、封锁)的ABM中生成了准确的机器学习元模型:使用25%的数据时的均方根误差(RMSE)接近完整数据集的RMSE(一个模型中分别为0.15和0.14;另一个模型中分别为0.07和0.06)。然而,采用强力干预措施的ABM的元模型需要更多的训练数据(至少60%)才能达到类似的精度。总之,机器学习元模型在某些情况下可用于协助更快地做出决策。

相似文献

2
Using machine learning as a surrogate model for agent-based simulations.使用机器学习作为基于代理的模拟的替代模型。
PLoS One. 2022 Feb 10;17(2):e0263150. doi: 10.1371/journal.pone.0263150. eCollection 2022.
4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

2
Computational Decision Support for the COVID-19 Healthcare Coalition.针对新型冠状病毒肺炎医疗联盟的计算决策支持
Comput Sci Eng. 2020 Nov 6;23(1):17-24. doi: 10.1109/MCSE.2020.3036586. eCollection 2021 Jan.
7
A look into the future of the COVID-19 pandemic in Europe: an expert consultation.欧洲新冠疫情的未来展望:一次专家咨询
Lancet Reg Health Eur. 2021 Sep;8:100185. doi: 10.1016/j.lanepe.2021.100185. Epub 2021 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验