Liu Dake, Wanniarachchi Thisuri N, Jiang Guangde, Seabra Gustavo, Cao Shugeng, Bruner Steven D, Ding Yousong
Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida Gainesville Florida 32610 USA
Department of Chemistry, University of Florida Gainesville Florida 32611 USA
RSC Chem Biol. 2022 Feb 16;3(4):436-446. doi: 10.1039/d1cb00238d. eCollection 2022 Apr 6.
Nitroheterocycle antibiotics, particularly 5-nitroimidazoles, are frequently used for treating anaerobic infections. The antimicrobial activities of these drugs heavily rely on the bioactivation, mainly mediated by widely distributed bacterial nitroreductases (NTRs). However, the bioactivation can also lead to severe toxicities and drug resistance. Mechanistic understanding of NTR-mediated 5-nitroimidazole metabolism can potentially aid addressing these issues. Here, we report the metabolism of structurally diverse nitroimidazole drug molecules by a NTR from a human pathogen (HiNfsB). Our detailed bioinformatic analysis uncovered that HiNfsB represents a group of unexplored oxygen-insensitive NTRs. Biochemical characterization of the recombinant enzyme revealed that HiNfsB effectively metabolizes ten clinically used nitroimidazoles. Furthermore, HiNfsB generated not only canonical nitroreduction metabolites but also stable, novel dimeric products from three nitroimidazoles, whose structures were proposed based on the results of high resolution MS and tandem MS analysis. X-ray structural analysis of the enzyme coupled with site-directed mutagenesis identified four active site residues important to its catalysis and broad substrate scope. Finally, transient expression of HiNfsB sensitized an mutant strain to 5-nitroimidazoles under anaerobic conditions. Together, these results advance our understanding of the metabolism of nitroimidazole antibiotics mediated by a new NTR group and reinforce the research on the natural antibiotic resistome for addressing the antibiotic resistance crisis.
硝基杂环抗生素,尤其是5-硝基咪唑类,常用于治疗厌氧菌感染。这些药物的抗菌活性很大程度上依赖于生物活化作用,主要由广泛分布的细菌硝基还原酶(NTRs)介导。然而,这种生物活化作用也可能导致严重的毒性和耐药性。对NTR介导的5-硝基咪唑代谢的机制理解可能有助于解决这些问题。在此,我们报道了一种来自人类病原体的NTR(HiNfsB)对结构多样的硝基咪唑药物分子的代谢情况。我们详细的生物信息学分析发现,HiNfsB代表了一组未被探索的对氧不敏感的NTRs。重组酶的生化特性表明,HiNfsB能有效代谢十种临床使用的硝基咪唑。此外,HiNfsB不仅产生了典型的硝基还原代谢产物,还从三种硝基咪唑中生成了稳定的新型二聚体产物,其结构是基于高分辨率质谱和串联质谱分析结果提出的。对该酶的X射线结构分析结合定点突变确定了四个对其催化作用和广泛底物范围至关重要的活性位点残基。最后,HiNfsB的瞬时表达使一种突变菌株在厌氧条件下对5-硝基咪唑敏感。总之,这些结果增进了我们对由一个新的NTR组介导的硝基咪唑抗生素代谢的理解,并加强了对天然抗生素耐药基因组的研究以应对抗生素耐药危机。