Suppr超能文献

界面处自旋电流传输的原子尺度控制

Atomic Scale Control of Spin Current Transmission at Interfaces.

作者信息

Wahada Mohamed Amine, Şaşıoğlu Ersoy, Hoppe Wolfgang, Zhou Xilin, Deniz Hakan, Rouzegar Reza, Kampfrath Tobias, Mertig Ingrid, Parkin Stuart S P, Woltersdorf Georg

机构信息

Max Planck Institute for Microstructure Physics, Weinberg 2, 06120 Halle, Germany.

Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle, Germany.

出版信息

Nano Lett. 2022 May 11;22(9):3539-3544. doi: 10.1021/acs.nanolett.1c04358. Epub 2022 Apr 20.

Abstract

Ferromagnet/heavy metal bilayers represent a central building block for spintronic devices where the magnetization of the ferromagnet can be controlled by spin currents generated in the heavy metal. The efficiency of spin current generation is paramount. Equally important is the efficient transfer of this spin current across the ferromagnet/heavy metal interface. Here, we show theoretically and experimentally that for Ta as heavy metal the interface only partially transmits the spin current while this effect is absent when Pt is used as heavy metal. This is due to magnetic moment reduction at the interface caused by 3d-5d hybridization effects. We show that this effect can be avoided by atomically thin interlayers. On the basis of our theoretical model we conclude that this is a general effect and occurs for all 5d metals with less than half-filled 5d shell.

摘要

铁磁体/重金属双层结构是自旋电子器件的核心组成部分,其中铁磁体的磁化可由重金属中产生的自旋电流控制。自旋电流产生的效率至关重要。同样重要的是,这种自旋电流要能有效地穿过铁磁体/重金属界面。在此,我们通过理论和实验表明,对于作为重金属的钽,该界面仅部分传输自旋电流,而当使用铂作为重金属时则不存在这种效应。这是由于3d - 5d杂化效应导致界面处磁矩减小。我们表明,这种效应可通过原子级薄的中间层来避免。基于我们的理论模型,我们得出这是一种普遍效应,并且对于所有5d壳层未满的5d金属都会发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a05d/9101066/a2d80f9338da/nl1c04358_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验