IEEE Trans Med Imaging. 2022 Oct;41(10):2658-2669. doi: 10.1109/TMI.2022.3169003. Epub 2022 Sep 30.
Radiological images such as computed tomography (CT) and X-rays render anatomy with intrinsic structures. Being able to reliably locate the same anatomical structure across varying images is a fundamental task in medical image analysis. In principle it is possible to use landmark detection or semantic segmentation for this task, but to work well these require large numbers of labeled data for each anatomical structure and sub-structure of interest. A more universal approach would learn the intrinsic structure from unlabeled images. We introduce such an approach, called Self-supervised Anatomical eMbedding (SAM). SAM generates semantic embeddings for each image pixel that describes its anatomical location or body part. To produce such embeddings, we propose a pixel-level contrastive learning framework. A coarse-to-fine strategy ensures both global and local anatomical information are encoded. Negative sample selection strategies are designed to enhance the embedding's discriminability. Using SAM, one can label any point of interest on a template image and then locate the same body part in other images by simple nearest neighbor searching. We demonstrate the effectiveness of SAM in multiple tasks with 2D and 3D image modalities. On a chest CT dataset with 19 landmarks, SAM outperforms widely-used registration algorithms while only taking 0.23 seconds for inference. On two X-ray datasets, SAM, with only one labeled template image, surpasses supervised methods trained on 50 labeled images. We also apply SAM on whole-body follow-up lesion matching in CT and obtain an accuracy of 91%. SAM can also be applied for improving image registration and initializing CNN weights.
放射影像学,如计算机断层扫描(CT)和 X 射线,以固有结构呈现解剖结构。能够在不同的图像中可靠地定位相同的解剖结构是医学图像分析中的一项基本任务。原则上,可以使用地标检测或语义分割来完成此任务,但为了良好地工作,这些方法需要为每个感兴趣的解剖结构和子结构提供大量标记数据。一种更通用的方法是从未标记的图像中学习内在结构。我们引入了一种称为自监督解剖嵌入(SAM)的方法。SAM 为每个图像像素生成描述其解剖位置或身体部位的语义嵌入。为了生成这种嵌入,我们提出了一种像素级对比学习框架。粗到精的策略确保了全局和局部解剖信息都被编码。负样本选择策略旨在增强嵌入的可辨别性。使用 SAM,可以在模板图像上标记任何感兴趣的点,然后通过简单的最近邻搜索在其他图像中定位相同的身体部位。我们在 2D 和 3D 图像模态的多个任务中展示了 SAM 的有效性。在一个包含 19 个地标点的胸部 CT 数据集上,SAM 优于广泛使用的注册算法,而推理时间仅为 0.23 秒。在两个 X 射线数据集上,仅使用一个标记模板图像的 SAM 就超过了在 50 个标记图像上训练的有监督方法。我们还将 SAM 应用于 CT 中的全身随访病变匹配,并获得了 91%的准确率。SAM 还可以用于改进图像注册和初始化 CNN 权重。