Suppr超能文献

在利用氧气维持生命活动的同时防止活性氧过度产生:各系统的机制并不相同。

Thriving in Oxygen While Preventing ROS Overproduction: No Two Systems Are Created Equal.

作者信息

Mendez-Romero O, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S

机构信息

Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.

出版信息

Front Physiol. 2022 Apr 4;13:874321. doi: 10.3389/fphys.2022.874321. eCollection 2022.

Abstract

From 2.5 to 2.0 billion years ago, atmospheric oxygen concentration [O] rose thousands of times, leading to the first mass extinction. Reactive Oxygen Species (ROS) produced by the non-catalyzed partial reduction of O were highly toxic eliminating many species. Survivors developed different strategies to cope with ROS toxicity. At the same time, using O as the final acceptor in respiratory chains increased ATP production manifold. Thus, both O and ROS were strong drivers of evolution, as species optimized aerobic metabolism while developing ROS-neutralizing mechanisms. The first line of defense is preventing ROS overproduction and two mechanisms were developed in parallel: 1) Physiological uncoupling systems (PUS), which increase the rate of electron fluxes in respiratory systems. 2) Avoidance of excess [O]. However, it seems that as avoidance efficiency improved, PUSs became less efficient. PUS includes branched respiratory chains and proton sinks, which may be proton specific, the mitochondrial uncoupling proteins (UCPs) or unspecific, the mitochondrial permeability transition pore (PTP). High [O] avoidance also involved different strategies: 1) Cell association, as in biofilms or in multi-cellularity allowed gas-permeable organisms (oxyconformers) from bacterial to arthropods to exclude O 2) Motility, to migrate from hypoxic niches. 3) Oxyregulator organisms: as early as in fish, and O-impermeable epithelium excluded all gases and only exact amounts entered through specialized respiratory systems. Here we follow the parallel evolution of PUS and O-avoidance, PUS became less critical and lost efficiency. In regard, to proton sinks, there is fewer evidence on their evolution, although UCPs have indeed drifted in function while in some species it is not clear whether PTPs exist.

摘要

从25亿年前到20亿年前,大气中的氧气浓度[O]上升了数千倍,导致了第一次大规模灭绝。由O的非催化部分还原产生的活性氧(ROS)具有高毒性,消灭了许多物种。幸存者们发展出了不同的策略来应对ROS毒性。与此同时,在呼吸链中使用O作为最终受体使ATP产量大幅增加。因此,O和ROS都是进化的强大驱动力,因为物种在优化有氧代谢的同时也在发展ROS中和机制。第一道防线是防止ROS过度产生,并行发展了两种机制:1)生理解偶联系统(PUS),它提高了呼吸系统中电子通量的速率。2)避免过量的[O]。然而,随着避免效率的提高,PUS似乎变得效率更低。PUS包括分支呼吸链和质子汇,质子汇可能是质子特异性的,即线粒体解偶联蛋白(UCPs),也可能是非特异性的,即线粒体通透性转换孔(PTP)。高[O]避免也涉及不同的策略:1)细胞聚集,如在生物膜或多细胞生物中,使从细菌到节肢动物的透气生物体(氧顺应者)能够排除O2)运动性,以便从低氧生态位迁移。3)氧调节生物体:早在鱼类中,不透氧的上皮就排除了所有气体,只有精确数量的气体通过专门的呼吸系统进入。在这里,我们追踪PUS和O避免的平行进化,PUS变得不那么关键且效率降低。关于质子汇,虽然UCPs的功能确实发生了漂移,而且在某些物种中尚不清楚PTPs是否存在,但关于它们进化的证据较少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b1/9013945/d7ddd0ab2028/fphys-13-874321-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验