Suppr超能文献

团队运动中运动员追踪技术的加速度和减速度数据推导与清理技术:一项范围综述。

Techniques to derive and clean acceleration and deceleration data of athlete tracking technologies in team sports: A scoping review.

作者信息

Ellens Susanne, Middleton Kane, Gastin Paul B, Varley Matthew C

机构信息

Sport and Exercise Science, School of Allied Health, Human Services & Sport, La Trobe University, Melbourne, VIC, Australia.

La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, VIC, Australia.

出版信息

J Sports Sci. 2022 Aug;40(16):1772-1800. doi: 10.1080/02640414.2022.2054535. Epub 2022 Apr 21.

Abstract

The application of acceleration and deceleration data as a measure of an athlete's physical performance is common practice in team sports. Acceleration and deceleration are monitored with athlete tracking technologies during training and games to quantify training load, prevent injury and enhance performance. However, inconsistencies exist throughout the literature in the reported methodological procedures used to quantify acceleration and deceleration. The object of this review was to systematically map and provide a summary of the methodological procedures being used on acceleration and deceleration data obtained from athlete tracking technologies in team sports and describe the applications of the data. Systematic searches of multiple databases were undertaken. To be included, studies must have investigated full body acceleration and/or deceleration data of athlete tracking technologies. The search identified 276 eligible studies. Most studies (60%) did not provide information on how the data was derived and what sequence of steps were taken to clean the data. Acceleration and deceleration data were commonly applied to quantify and describe movement demands using effort metrics. This scoping review identified research gaps in the methodological procedures and deriving and cleaning techniques that warrant future research focussing on their effect on acceleration and deceleration data.

摘要

在团队运动中,将加速和减速数据用作衡量运动员身体表现的指标是一种常见做法。在训练和比赛期间,利用运动员追踪技术监测加速和减速情况,以量化训练负荷、预防损伤并提高表现。然而,在已报道的用于量化加速和减速的方法程序方面,整个文献中存在不一致之处。本综述的目的是系统梳理并总结团队运动中从运动员追踪技术获得的加速和减速数据所采用的方法程序,并描述这些数据的应用。对多个数据库进行了系统检索。要纳入研究,必须调查运动员追踪技术的全身加速和/或减速数据。检索确定了276项符合条件的研究。大多数研究(60%)未提供关于数据如何得出以及采取了哪些步骤来清理数据的信息。加速和减速数据通常用于使用努力指标来量化和描述运动需求。这项范围综述确定了方法程序以及数据推导和清理技术方面的研究空白,这些空白值得未来开展研究,重点关注它们对加速和减速数据的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验