Suppr超能文献

新冠病毒肺炎与帕金森病中的内质网应激:体外和计算机模拟证据

ER Stress in COVID-19 and Parkinson's Disease: In Vitro and In Silico Evidences.

作者信息

Chaudhry Zahara L, Gamal Mahmoud, Ferhati Ingrid, Warda Mohamad, Ahmed Bushra Y

机构信息

Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK.

Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.

出版信息

Brain Sci. 2022 Apr 16;12(4):507. doi: 10.3390/brainsci12040507.

Abstract

The outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signifies a serious worldwide concern to public health. Both transcriptome and proteome of SARS-CoV-2-infected cells synergize the progression of infection in host, which may exacerbate symptoms and/or progression of other chronic diseases such as Parkinson's disease (PD). Oxidative stress is a well-known cause of endoplasmic reticulum (ER) stress observed in both SARS-CoV-2 and PD. In the current study, we aimed to explore the influence of PKR-like ER kinase (PERK) stress pathway under SARS-CoV-2-mediated infection and in human cell model of PD. Furthermore, we investigated whether they are interconnected and if the ER stress inhibitors could inhibit cell death and provide cellular protection. To achieve this aim, we have incorporated in silico analysis obtained from gene set enrichment analysis (GSEA), a literature review and laboratory data. The neurotoxin, 6-hydroxy dopamine (6OHDA), was used to mimic the biochemical and neuropathological characteristics of PD by inducing oxidative stress in dopamine-containing neurons differentiated from ReNVM cell line (dDCNs). Furthermore, we explored if ER stress influences activation of caspases-2, -4 and -8 in SARS-CoV-2 and in stressed dDCNs. Our laboratory data using Western blot, immunocytochemistry and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) analyses indicated that 6OHDA-induced toxicity triggered activation of caspases-2, -4 and -8 in dDCNs. Under SARS-CoV-2 infection of different cell types, GSEA revealed cell-specific sensitivities to oxidative and ER stresses. Cardiomyocytes and type II alveolar epithelial-like cells were more vulnerable to oxidative stress than neural cells. On the other side, only cardiomyocytes activated the unfolded protein response, however, the PERK pathway was operative in both cardiomyocytes and neural cells. In addition, caspase-4 activation by a SARS-CoV-2 was observed via in silico analyses. These results demonstrate that the ER stress pathway under oxidative stress in SARS-CoV-2 and PD are interconnected using diverse pathways. Furthermore, our results using the ER stress inhibitor and caspase specific inhibitors provided cellular protection suggesting that the use of specific inhibitors can provide effective therapeutic approaches for the treatment of COVID-19 and PD.

摘要

由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的新型冠状病毒肺炎(COVID-19)疫情是全球公共卫生领域严重关切的问题。SARS-CoV-2感染细胞的转录组和蛋白质组共同促进宿主感染的进展,这可能会加重症状和/或其他慢性疾病(如帕金森病(PD))的进展。氧化应激是在SARS-CoV-2和PD中都观察到的内质网(ER)应激的一个众所周知的原因。在本研究中,我们旨在探讨SARS-CoV-2介导的感染以及在PD的人类细胞模型中PKR样内质网激酶(PERK)应激途径的影响。此外,我们研究了它们是否相互关联,以及内质网应激抑制剂是否能抑制细胞死亡并提供细胞保护。为实现这一目标,我们纳入了从基因集富集分析(GSEA)获得的计算机分析、文献综述和实验室数据。神经毒素6-羟基多巴胺(6OHDA)通过在从ReNVM细胞系分化而来的含多巴胺神经元(dDCNs)中诱导氧化应激,来模拟PD的生化和神经病理学特征。此外,我们探讨了内质网应激是否会影响SARS-CoV-2和应激的dDCNs中半胱天冬酶-2、-4和-8的激活。我们使用蛋白质印迹、免疫细胞化学和3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)分析的实验室数据表明,6OHDA诱导的毒性触发了dDCNs中半胱天冬酶-2、-4和-8的激活。在不同细胞类型的SARS-CoV-2感染下,GSEA揭示了细胞对氧化应激和内质网应激的特异性敏感性。心肌细胞和II型肺泡上皮样细胞比神经细胞更容易受到氧化应激的影响。另一方面,只有心肌细胞激活了未折叠蛋白反应,然而,PERK途径在心肌细胞和神经细胞中均起作用。此外,通过计算机分析观察到SARS-CoV-2激活了半胱天冬酶-4。这些结果表明,SARS-CoV-2和PD中氧化应激下的内质网应激途径通过多种途径相互关联。此外,我们使用内质网应激抑制剂和半胱天冬酶特异性抑制剂的结果提供了细胞保护,表明使用特异性抑制剂可为治疗COVID-19和PD提供有效的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f23/9025812/ce265bd40e1c/brainsci-12-00507-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验