Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary.
MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary.
Biosensors (Basel). 2022 Mar 22;12(4):188. doi: 10.3390/bios12040188.
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
新型生物传感器已经为快速检测整个细菌(或其部分)的黏附、生物膜的形成以及抗生素的效果提供了一种方法。此外,最近传感器技术的检测灵敏度已经足够高,可以研究分子级别的生物过程。通常,这些测量可以在不使用标记的情况下实时进行。尽管本工作总结了这些出色的性能,但新型无标记传感器技术在基础生物学研究中的应用仍然很少;文献主要以启发式工作为主,主要监测给定分析物的存在和数量。本文的目的是:(i)概述无标记生物传感器在细菌监测中的现状;(ii)总结具有生物学相关性的潜在新方向,以启动未来的发展。本文详细讨论了光学、机械和电气传感技术在细菌监测中的应用。为了综述所概述技术在细菌研究中的潜在未来应用,我们总结了与细菌细胞黏附和存活相关的最重要的动力学过程。这些过程是使用现代无标记技术进行动力学研究的潜在目标,以揭示新的基本方面。对抗生素和其他抗菌剂的耐药性、细菌黏附的最重要生物学机制以及控制黏附的策略,以及细菌与哺乳动物宿主细胞的相互作用,都与生物传感器的未来发展和应用具有重要的相关性。