Suppr超能文献

基于人工智能的可穿戴步态监测在帕金森病管理优化中的概念验证。

Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson's Disease Management Optimization.

机构信息

Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, 400012 Cluj-Napoca, Romania.

Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland.

出版信息

Biosensors (Basel). 2022 Mar 23;12(4):189. doi: 10.3390/bios12040189.

Abstract

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder, affecting 6.2 million patients and causing disability and decreased quality of life. The research is oriented nowadays toward artificial intelligence (AI)-based wearables for early diagnosis and long-term PD monitoring. Our primary objective is the monitoring and assessment of gait in PD patients. We propose a wearable physiograph for qualitative and quantitative gait assessment, which performs bilateral tracking of the foot biomechanics and unilateral tracking of arm balance. Gait patterns are assessed by means of correlation. The surface plot of a correlation coefficient matrix, generated from the recorded signals, is classified using convolutional neural networks into physiological or PD-specific gait. The novelty is given by the proposed AI-based decisional support procedure for gait assessment. A proof of concept of the proposed physiograph is validated in a clinical environment on five patients and five healthy controls, proving to be a feasible solution for ubiquitous gait monitoring and assessment in PD. PD management demonstrates the complexity of the human body. A platform empowering multidisciplinary, AI-evidence-based decision support assessments for optimal dosing between drug and non-drug therapy could lay the foundation for affordable precision medicine.

摘要

帕金森病(PD)是第二大常见的进行性神经退行性疾病,影响 620 万患者,导致残疾和生活质量下降。目前的研究方向是基于人工智能(AI)的可穿戴设备,用于早期诊断和长期 PD 监测。我们的主要目标是监测和评估 PD 患者的步态。我们提出了一种可穿戴式生理记录仪,用于定性和定量的步态评估,它可以对脚的生物力学进行双侧跟踪,并对手臂平衡进行单侧跟踪。步态模式通过相关性进行评估。从记录的信号生成相关系数矩阵的表面图,然后使用卷积神经网络将其分类为生理或 PD 特定的步态。该方法的新颖之处在于提出了基于 AI 的决策支持程序,用于步态评估。在临床环境中,对五名患者和五名健康对照者进行了所提出的生理记录仪的概念验证,证明它是 PD 中无处不在的步态监测和评估的可行解决方案。PD 管理证明了人体的复杂性。一个能够为药物和非药物治疗之间的最佳剂量提供多学科、基于 AI 证据的决策支持评估的平台,可以为负担得起的精准医学奠定基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验