Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund, Sweden.
Nat Commun. 2022 Apr 21;13(1):2110. doi: 10.1038/s41467-022-29608-7.
The app-based COVID Symptom Study was launched in Sweden in April 2020 to contribute to real-time COVID-19 surveillance. We enrolled 143,531 study participants (≥18 years) who contributed 10.6 million daily symptom reports between April 29, 2020 and February 10, 2021. Here, we include data from 19,161 self-reported PCR tests to create a symptom-based model to estimate the individual probability of symptomatic COVID-19, with an AUC of 0.78 (95% CI 0.74-0.83) in an external dataset. These individual probabilities are employed to estimate daily regional COVID-19 prevalence, which are in turn used together with current hospital data to predict next week COVID-19 hospital admissions. We show that this hospital prediction model demonstrates a lower median absolute percentage error (MdAPE: 25.9%) across the five most populated regions in Sweden during the first pandemic wave than a model based on case notifications (MdAPE: 30.3%). During the second wave, the error rates are similar. When we apply the same model to an English dataset, not including local COVID-19 test data, we observe MdAPEs of 22.3% and 19.0% during the first and second pandemic waves, respectively, highlighting the transferability of the prediction model.
基于应用程序的 COVID 症状研究于 2020 年 4 月在瑞典启动,旨在为实时 COVID-19 监测做出贡献。我们招募了 143531 名研究参与者(≥18 岁),他们在 2020 年 4 月 29 日至 2021 年 2 月 10 日期间每天报告了 1060 万次症状。在这里,我们纳入了 19161 份自我报告的 PCR 检测数据,创建了一个基于症状的模型来估计个体出现有症状 COVID-19 的概率,其在外部数据集的 AUC 为 0.78(95%CI 0.74-0.83)。我们利用这些个体概率来估计每日的区域 COVID-19 流行率,进而将其与当前的医院数据结合起来预测下周的 COVID-19 住院人数。我们表明,在首次大流行期间,在瑞典人口最多的五个地区,这种医院预测模型的中位数绝对百分比误差(MdAPE:25.9%)低于基于病例报告的模型(MdAPE:30.3%)。在第二波疫情期间,误差率相似。当我们将相同的模型应用于不包括当地 COVID-19 检测数据的英语数据集时,我们观察到第一和第二波疫情期间的 MdAPEs 分别为 22.3%和 19.0%,突出了预测模型的可转移性。