Suppr超能文献

从传统到数据驱动的药物化学:一个案例研究。

From traditional to data-driven medicinal chemistry: A case study.

机构信息

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, D-53113 Bonn, Germany; Medicinal Chemistry Research Laboratories, R&D Division, Daiichi Sankyo Company, 140-8710 Tokyo, Japan.

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, D-53113 Bonn, Germany.

出版信息

Drug Discov Today. 2022 Aug;27(8):2065-2070. doi: 10.1016/j.drudis.2022.04.017. Epub 2022 Apr 20.

Abstract

Artificial intelligence (AI) and data science are beginning to impact drug discovery. It usually takes considerable time and efforts until new scientific concepts or technologies make a transition from conceptual stages to practical applicability and experience values are gathered. Especially for computational approaches, demonstrating measurable impact on drug discovery projects is not a trivial task. A pilot study at Daiichi Sankyo Company has attempted to integrate data science into practical medicinal chemistry and quantify the impact, as reported herein. Although characteristic features and focal points of early-phase drug discovery naturally vary at different pharmaceutical companies, the results of this pilot study indicate significant potential of data-driven medicinal chemistry and suggest new models for internal training of next-generation medicinal chemists.

摘要

人工智能(AI)和数据科学开始对药物发现产生影响。通常需要相当长的时间和努力,直到新的科学概念或技术从概念阶段过渡到实际适用性并积累经验值。特别是对于计算方法,证明对药物发现项目有可衡量的影响并非易事。本文报道了第一三共公司尝试将数据科学融入实际药物化学并量化其影响的一项试点研究。虽然不同制药公司早期药物发现的特点和重点自然不同,但该试点研究的结果表明数据驱动的药物化学具有巨大的潜力,并为下一代药物化学家的内部培训提出了新的模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验