Orji Chijioke, Reghefaoui Maiss, Saavedra Palacios Michell Susan, Thota Priyanka, Peresuodei Tariladei S, Gill Abhishek, Hamid Pousette
Trauma and Orthopaedics, California Institute of Behavioral Neurosciences & Psychology, California, USA.
Internal Medicine, University of Debrecen, Debrecen, HUN.
Cureus. 2023 Oct 26;15(10):e47732. doi: 10.7759/cureus.47732. eCollection 2023 Oct.
The integration of artificial intelligence (AI) in healthcare has sparked interest in its potential to revolutionize medical diagnostics. This systematic review explores the application of AI and machine learning (ML) techniques in diagnosing scaphoid fractures, which account for a significant percentage of carpal bone fractures and have important implications for wrist function. Scaphoid fractures, common in young and active individuals, require an early and accurate diagnosis for effective treatment. AI has the potential to automate and improve the accuracy of scaphoid fracture detection on radiography, aiding in early diagnosis and reducing unnecessary clinical examinations. This systematic review discusses the methods used to identify relevant studies, including search criteria and quality assessment tools, and presents the results of the selected studies. The findings indicate that AI-driven methods can improve diagnostic accuracy, reducing the risk of missed fractures and complications. AI assistance can also alleviate the workload of medical professionals, improving diagnostic efficiency and reducing observer fatigue. However, challenges such as algorithm limitations and the need for continuous refinement must be addressed to ensure reliable fracture identification. This review underscores the clinical significance of AI-assisted diagnostics, especially in cases where fractures may be subtle or occult. It emphasizes the importance of integrating AI into medical education and training and calls for robust data collection and collaboration between AI developers and medical practitioners. Future research should focus on larger datasets, algorithm improvement, cost-effectiveness assessment, and international partnerships to fully harness the potential of AI in diagnosing scaphoid fractures.
人工智能(AI)在医疗保健领域的整合引发了人们对其革新医学诊断潜力的兴趣。本系统综述探讨了人工智能和机器学习(ML)技术在诊断舟状骨骨折中的应用,舟状骨骨折在腕骨骨折中占相当大的比例,对腕关节功能有重要影响。舟状骨骨折在年轻活跃人群中很常见,需要早期准确诊断以进行有效治疗。人工智能有潜力使舟状骨骨折在放射成像上的检测自动化并提高其准确性,有助于早期诊断并减少不必要的临床检查。本系统综述讨论了用于识别相关研究的方法,包括搜索标准和质量评估工具,并展示了所选研究的结果。研究结果表明,人工智能驱动的方法可以提高诊断准确性,降低漏诊骨折和并发症的风险。人工智能辅助还可以减轻医学专业人员的工作量,提高诊断效率并减少观察者疲劳。然而,必须解决算法局限性和持续优化需求等挑战,以确保可靠的骨折识别。本综述强调了人工智能辅助诊断的临床意义,特别是在骨折可能不明显或隐匿的情况下。它强调了将人工智能纳入医学教育和培训的重要性,并呼吁进行强大的数据收集以及人工智能开发者与医学从业者之间的合作。未来的研究应侧重于更大的数据集、算法改进、成本效益评估以及国际合作,以充分发挥人工智能在诊断舟状骨骨折方面的潜力。