Suppr超能文献

基于肿瘤及肿瘤与脑界面特征的预测世界卫生组织II级脑膜瘤脑侵犯的临床语义和影像组学列线图

A Clinical Semantic and Radiomics Nomogram for Predicting Brain Invasion in WHO Grade II Meningioma Based on Tumor and Tumor-to-Brain Interface Features.

作者信息

Li Ning, Mo Yan, Huang Chencui, Han Kai, He Mengna, Wang Xiaolan, Wen Jiaqi, Yang Siyu, Wu Haoting, Dong Fei, Sun Fenglei, Li Yiming, Yu Yizhou, Zhang Minming, Guan Xiaojun, Xu Xiaojun

机构信息

Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Department of Radiology, Fuyang District First People's Hospital, Hangzhou, China.

出版信息

Front Oncol. 2021 Oct 22;11:752158. doi: 10.3389/fonc.2021.752158. eCollection 2021.

Abstract

BACKGROUND

Brain invasion in meningioma has independent associations with increased risks of tumor progression, lesion recurrence, and poor prognosis. Therefore, this study aimed to construct a model for predicting brain invasion in WHO grade II meningioma by using preoperative MRI.

METHODS

One hundred seventy-three patients with brain invasion and 111 patients without brain invasion were included. Three mainstream features, namely, traditional semantic features and radiomics features from tumor and tumor-to-brain interface regions, were acquired. Predictive models correspondingly constructed on each feature set or joint feature set were constructed.

RESULTS

Traditional semantic findings, e.g., peritumoral edema and other four features, had comparable performance in predicting brain invasion with each radiomics feature set. By taking advantage of semantic features and radiomics features from tumoral and tumor-to-brain interface regions, an integrated nomogram that quantifies the risk factor of each selected feature was constructed and had the best performance in predicting brain invasion (area under the curve values were 0.905 in the training set and 0.895 in the test set).

CONCLUSIONS

This study provided a clinically available and promising approach to predict brain invasion in WHO grade II meningiomas by using preoperative MRI.

摘要

背景

脑膜瘤的脑侵犯与肿瘤进展、病变复发风险增加及预后不良独立相关。因此,本研究旨在利用术前磁共振成像(MRI)构建预测世界卫生组织(WHO)Ⅱ级脑膜瘤脑侵犯的模型。

方法

纳入173例有脑侵犯的患者和111例无脑侵犯的患者。获取了三种主流特征,即来自肿瘤及肿瘤与脑界面区域的传统语义特征和影像组学特征。相应地在每个特征集或联合特征集上构建预测模型。

结果

传统语义学发现,如瘤周水肿及其他四个特征,在预测脑侵犯方面与每个影像组学特征集表现相当。通过利用来自肿瘤及肿瘤与脑界面区域的语义特征和影像组学特征,构建了一个量化每个选定特征风险因素的综合列线图,其在预测脑侵犯方面表现最佳(训练集中曲线下面积值为0.905,测试集中为0.895)。

结论

本研究提供了一种通过术前MRI预测WHOⅡ级脑膜瘤脑侵犯的临床可用且有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ad/8570084/23802d594033/fonc-11-752158-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验