Suppr超能文献

奥密克戎变异株流行期间泰国新冠疫情每日统计数据的SARIMA模型预测性能

SARIMA Model Forecasting Performance of the COVID-19 Daily Statistics in Thailand during the Omicron Variant Epidemic.

作者信息

Duangchaemkarn Khanita, Boonchieng Waraporn, Wiwatanadate Phongtape, Chouvatut Varin

机构信息

Ph.D. Program in Biomedical Engineering, Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand.

Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand.

出版信息

Healthcare (Basel). 2022 Jul 14;10(7):1310. doi: 10.3390/healthcare10071310.

Abstract

This study aims to identify and evaluate a robust and replicable public health predictive model that can be applied to the COVID-19 time-series dataset, and to compare the model performance after performing the 7-day, 14-day, and 28-day forecast interval. The seasonal autoregressive integrated moving average (SARIMA) model was developed and validated using a Thailand COVID-19 open dataset from 1 December 2021 to 30 April 2022, during the Omicron variant outbreak. The SARIMA model with a non-statistically significant p-value of the Ljung-Box test, the lowest AIC, and the lowest RMSE was selected from the top five candidates for model validation. The selected models were validated using the 7-day, 14-day, and 28-day forward-chaining cross validation method. The model performance matrix for each forecast interval was evaluated and compared. The case fatality rate and mortality rate of the COVID-19 Omicron variant were estimated from the best performance model. The study points out the importance of different time interval forecasting that affects the model performance.

摘要

本研究旨在识别和评估一种稳健且可复制的公共卫生预测模型,该模型可应用于新冠疫情时间序列数据集,并比较在进行7天、14天和28天预测间隔后的模型性能。在奥密克戎变异株爆发期间,利用泰国2021年12月1日至2022年4月30日的新冠疫情开放数据集,开发并验证了季节性自回归积分滑动平均(SARIMA)模型。从五个候选模型中选择了Ljung-Box检验p值无统计学意义、AIC最低且RMSE最低的SARIMA模型进行模型验证。使用7天、14天和28天的前向链交叉验证方法对所选模型进行验证。评估并比较了每个预测间隔的模型性能矩阵。根据性能最佳的模型估算了新冠奥密克戎变异株的病死率和死亡率。该研究指出了不同时间间隔预测对模型性能的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fc2/9324558/1841308f7497/healthcare-10-01310-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验