Laios Alexandros, Kalampokis Evangelos, Johnson Racheal, Thangavelu Amudha, Tarabanis Constantine, Nugent David, De Jong Diederick
Department of Gynaecologic Oncology, St James's University Hospital, Leeds LS9 7TF, UK.
Department of Business Administration, University of Macedonia, 54636 Thessaloniki, Greece.
J Pers Med. 2022 Apr 10;12(4):607. doi: 10.3390/jpm12040607.
Complete surgical cytoreduction (R0 resection) is the single most important prognosticator in epithelial ovarian cancer (EOC). Explainable Artificial Intelligence (XAI) could clarify the influence of static and real-time features in the R0 resection prediction. We aimed to develop an AI-based predictive model for the R0 resection outcome, apply a methodology to explain the prediction, and evaluate the interpretability by analysing feature interactions. The retrospective cohort finally assessed 571 consecutive advanced-stage EOC patients who underwent cytoreductive surgery. An eXtreme Gradient Boosting (XGBoost) algorithm was employed to develop the predictive model including mostly patient- and surgery-specific variables. The Shapley Additive explanations (SHAP) framework was used to provide global and local explainability for the predictive model. The XGBoost accurately predicted R0 resection (area under curve [AUC] = 0.866; 95% confidence interval [CI] = 0.8−0.93). We identified “turning points” that increased the probability of complete cytoreduction including Intraoperative Mapping of Ovarian Cancer Score and Peritoneal Carcinomatosis Index < 4 and <5, respectively, followed by Surgical Complexity Score > 4, patient’s age < 60 years, and largest tumour bulk < 5 cm in a surgical environment of optimized infrastructural support. We demonstrated high model accuracy for the R0 resection prediction in EOC patients and provided novel global and local feature explainability that can be used for quality control and internal audit.
完全手术细胞减灭术(R0切除)是上皮性卵巢癌(EOC)最重要的单一预后指标。可解释人工智能(XAI)能够阐明静态和实时特征在R0切除预测中的影响。我们旨在开发一种基于人工智能的R0切除结果预测模型,应用一种方法来解释预测结果,并通过分析特征相互作用来评估可解释性。回顾性队列最终评估了571例连续接受细胞减灭术的晚期EOC患者。采用极端梯度提升(XGBoost)算法开发预测模型,该模型主要包括患者和手术相关的变量。使用Shapley加性解释(SHAP)框架为预测模型提供全局和局部可解释性。XGBoost准确预测了R0切除(曲线下面积[AUC]=0.866;95%置信区间[CI]=0.8 - 0.93)。我们确定了增加完全细胞减灭概率的“转折点”,包括卵巢癌术中评分和腹膜癌指数分别<4和<5,其次是手术复杂性评分>4、患者年龄<60岁,以及在优化基础设施支持的手术环境中最大肿瘤体积<5 cm。我们证明了该模型在EOC患者R0切除预测方面具有较高的准确性,并提供了可用于质量控制和内部审计的新颖全局和局部特征可解释性。