Suppr超能文献

卵巢癌的影像学之外:人工智能与多组学生物标志物的整合。

Ovarian cancer beyond imaging: integration of AI and multiomics biomarkers.

机构信息

Research Center for Medical Image Analysis and AI (MIAAI), Danube Private University, Krems, Austria.

Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria.

出版信息

Eur Radiol Exp. 2023 Sep 13;7(1):50. doi: 10.1186/s41747-023-00364-7.

Abstract

High-grade serous ovarian cancer is the most lethal gynaecological malignancy. Detailed molecular studies have revealed marked intra-patient heterogeneity at the tumour microenvironment level, likely contributing to poor prognosis. Despite large quantities of clinical, molecular and imaging data on ovarian cancer being accumulated worldwide and the rise of high-throughput computing, data frequently remain siloed and are thus inaccessible for integrated analyses. Only a minority of studies on ovarian cancer have set out to harness artificial intelligence (AI) for the integration of multiomics data and for developing powerful algorithms that capture the characteristics of ovarian cancer at multiple scales and levels. Clinical data, serum markers, and imaging data were most frequently used, followed by genomics and transcriptomics. The current literature proves that integrative multiomics approaches outperform models based on single data types and indicates that imaging can be used for the longitudinal tracking of tumour heterogeneity in space and potentially over time. This review presents an overview of studies that integrated two or more data types to develop AI-based classifiers or prediction models.Relevance statement Integrative multiomics models for ovarian cancer outperform models using single data types for classification, prognostication, and predictive tasks.Key points• This review presents studies using multiomics and artificial intelligence in ovarian cancer.• Current literature proves that integrative multiomics outperform models using single data types.• Around 60% of studies used a combination of imaging with clinical data.• The combination of genomics and transcriptomics with imaging data was infrequently used.

摘要

高级别浆液性卵巢癌是最致命的妇科恶性肿瘤。详细的分子研究揭示了肿瘤微环境水平上明显的个体内异质性,可能导致预后不良。尽管全世界积累了大量关于卵巢癌的临床、分子和影像学数据,以及高通量计算的兴起,但数据经常仍然是孤立的,因此无法进行综合分析。只有少数关于卵巢癌的研究旨在利用人工智能 (AI) 整合多组学数据,并开发强大的算法,以捕捉卵巢癌在多个尺度和水平上的特征。临床数据、血清标志物和影像学数据最常被使用,其次是基因组学和转录组学。目前的文献证明,综合多组学方法优于基于单一数据类型的模型,并表明影像学可用于肿瘤异质性的纵向跟踪,无论是在空间上还是在时间上。这篇综述介绍了整合两种或多种数据类型以开发基于人工智能的分类器或预测模型的研究概述。

相关性声明 用于卵巢癌的综合多组学模型在分类、预后和预测任务方面优于使用单一数据类型的模型。

关键点 • 这篇综述介绍了卵巢癌中使用多组学和人工智能的研究。 • 目前的文献证明,综合多组学优于使用单一数据类型的模型。 • 约 60%的研究将影像学与临床数据相结合。 • 基因组学和转录组学与影像学数据的组合很少被使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da7a/10497482/1003dc53ed71/41747_2023_364_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验