Suppr超能文献

开发一种新型术中评分系统以记录疾病的解剖特征(ANAFI评分),用于通过机器学习和可解释人工智能预测晚期卵巢癌的完全肿瘤细胞减灭术。

Development of a Novel Intra-Operative Score to Record Diseases' Anatomic Fingerprints (ANAFI Score) for the Prediction of Complete Cytoreduction in Advanced-Stage Ovarian Cancer by Using Machine Learning and Explainable Artificial Intelligence.

作者信息

Laios Alexandros, Kalampokis Evangelos, Johnson Racheal, Munot Sarika, Thangavelu Amudha, Hutson Richard, Broadhead Tim, Theophilou Georgios, Nugent David, De Jong Diederick

机构信息

Department of Gynaecologic Oncology, St James's University Hospital, Leeds LS9 7TF, UK.

Information Systems Lab, Department of Business Administration, University of Macedonia, 54636 Thessaloniki, Greece.

出版信息

Cancers (Basel). 2023 Feb 3;15(3):966. doi: 10.3390/cancers15030966.

Abstract

The Peritoneal Carcinomatosis Index (PCI) and the Intra-operative Mapping for Ovarian Cancer (IMO), to a lesser extent, have been universally validated in advanced-stage epithelial ovarian cancer (EOC) to describe the extent of peritoneal dissemination and are proven to be powerful predictors of the surgical outcome with an added sensitivity of assessment at laparotomy of around 70%. This leaves room for improvement because the two-dimensional anatomic scoring model fails to reflect the patient's real anatomy, as seen by a surgeon. We hypothesized that tumor dissemination in specific anatomic locations can be more predictive of complete cytoreduction (CC0) and survival than PCI and IMO tools in EOC patients. (2) Methods: We analyzed prospectively data collected from 508 patients with FIGO-stage IIIB-IVB EOC who underwent cytoreductive surgery between January 2014 and December 2019 at a UK tertiary center. We adapted the structured ESGO ovarian cancer report to provide detailed information on the patterns of tumor dissemination (cancer anatomic fingerprints). We employed the extreme gradient boost (XGBoost) to model only the variables referring to the EOC disseminated patterns, to create an intra-operative score and judge the predictive power of the score alone for complete cytoreduction (CC0). Receiver operating characteristic (ROC) curves were then used for performance comparison between the new score and the existing PCI and IMO tools. We applied the Shapley additive explanations (SHAP) framework to support the feature selection of the narrated cancer fingerprints and provide global and local explainability. Survival analysis was performed using Kaplan-Meier curves and Cox regression. (3) Results: An intra-operative disease score was developed based on specific weights assigned to the cancer anatomic fingerprints. The scores range from 0 to 24. The XGBoost predicted CC0 resection (area under curve (AUC) = 0.88 CI = 0.854-0.913) with high accuracy. Organ-specific dissemination on the small bowel mesentery, large bowel serosa, and diaphragmatic peritoneum were the most crucial features globally. When added to the composite model, the novel score slightly enhanced its predictive value (AUC = 0.91, CI = 0.849-0.963). We identified a "turning point", ≤5, that increased the probability of CC0. Using conventional logistic regression, the new score was superior to the PCI and IMO scores for the prediction of CC0 (AUC = 0.81 vs. 0.73 and 0.67, respectively). In multivariate Cox analysis, a 1-point increase in the new intra-operative score was associated with poorer progression-free (HR: 1.06; 95% CI: 1.03-1.09, < 0.005) and overall survival (HR: 1.04; 95% CI: 1.01-1.07), by 4% and 6%, respectively. (4) Conclusions: The presence of cancer disseminated in specific anatomical sites, including small bowel mesentery, large bowel serosa, and diaphragmatic peritoneum, can be more predictive of CC0 and survival than the entire PCI and IMO scores. Early intra-operative assessment of these areas only may reveal whether CC0 is achievable. In contrast to the PCI and IMO scores, the novel score remains predictive of adverse survival outcomes.

摘要

腹膜癌指数(PCI)以及在较小程度上的卵巢癌术中图谱(IMO),在晚期上皮性卵巢癌(EOC)中已得到广泛验证,用于描述腹膜播散的程度,并且被证明是手术结果的有力预测指标,在剖腹手术时评估的额外敏感性约为70%。这仍有改进的空间,因为二维解剖评分模型无法反映外科医生所看到的患者真实解剖结构。我们假设,在EOC患者中,特定解剖位置的肿瘤播散比PCI和IMO工具更能预测完全细胞减灭术(CC0)和生存率。(2)方法:我们前瞻性分析了2014年1月至2019年12月在英国一家三级中心接受细胞减灭术的508例FIGO IIIB-IVB期EOC患者收集的数据。我们采用结构化的欧洲妇科肿瘤学会(ESGO)卵巢癌报告,以提供有关肿瘤播散模式(癌症解剖指纹)的详细信息。我们使用极端梯度提升(XGBoost)仅对涉及EOC播散模式的变量进行建模,以创建术中评分并判断该评分单独对完全细胞减灭术(CC0)的预测能力。然后使用受试者工作特征(ROC)曲线对新评分与现有的PCI和IMO工具进行性能比较。我们应用夏普利加性解释(SHAP)框架来支持所述癌症指纹的特征选择,并提供全局和局部可解释性。使用Kaplan-Meier曲线和Cox回归进行生存分析。(3)结果:基于赋予癌症解剖指纹的特定权重制定了术中疾病评分。评分范围为0至24。XGBoost对CC0切除的预测准确率很高(曲线下面积(AUC)=0.88,置信区间(CI)=0.854-0.913)。小肠系膜、大肠浆膜和膈肌腹膜上的器官特异性播散是全局最关键的特征。当添加到综合模型中时,新评分略微提高了其预测价值(AUC = 0.91,CI = 0.849-0.963)。我们确定了一个“转折点”,≤5,这增加了CC0的概率。使用传统逻辑回归,新评分在预测CC0方面优于PCI和IMO评分(AUC分别为0.81 vs. 0.73和0.67)。在多变量Cox分析中,新术中评分每增加1分与无进展生存期(风险比(HR):1.06;95%CI:1.03-1.09,P<0.005)和总生存期(HR:1.04;95%CI:1.01-1.07)分别降低4%和6%相关。(4)结论:在特定解剖部位播散的癌症,包括小肠系膜

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b18/9913185/e511a6a17be7/cancers-15-00966-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验