Suppr超能文献

胸部X光严重程度评分在COVID-19患者死亡率多变量预测模型中的作用:一项单中心回顾性研究

Role of a Chest X-ray Severity Score in a Multivariable Predictive Model for Mortality in Patients with COVID-19: A Single-Center, Retrospective Study.

作者信息

Baikpour Masoud, Carlos Alex, Morasse Ryan, Gissel Hannah, Perez-Gutierrez Victor, Nino Jessica, Amaya-Suarez Jose, Ali Fatimatu, Toledano Talya, Arampulikan Joseph, Gold Menachem, Venugopal Usha, Pillai Anjana, Omonuwa Kennedy, Menon Vidya

机构信息

Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.

Department of Medicine, NYC Health and Hospitals/Lincoln, 234 East 149th Street, Bronx, NY 10451, USA.

出版信息

J Clin Med. 2022 Apr 12;11(8):2157. doi: 10.3390/jcm11082157.

Abstract

Predicting the mortality risk of patients with Coronavirus Disease 2019 (COVID-19) can be valuable in allocating limited medical resources in the setting of outbreaks. This study assessed the role of a chest X-ray (CXR) scoring system in a multivariable model in predicting the mortality of COVID-19 patients by performing a single-center, retrospective, observational study including consecutive patients admitted with a confirmed diagnosis of COVID-19 and an initial CXR. The CXR severity score was calculated by three radiologists with 12 to 15 years of experience in thoracic imaging, based on the extent of lung involvement and density of lung opacities. Logistic regression analysis was used to identify independent predictive factors for mortality to create a predictive model. A validation dataset was used to calculate its predictive value as the AUROC. A total of 628 patients (58.1% male) were included in this study. Age (p < 0.001), sepsis (p < 0.001), S/F ratio (p < 0.001), need for mechanical ventilation (p < 0.001), and the CXR severity score (p = 0.005) were found to be independent predictive factors for mortality. We used these variables to develop a predictive model with an AUROC of 0.926 (0.891, 0.962), which was significantly higher than that of the WHO COVID severity classification, 0.853 (0.798, 0.909) (one-tailed p-value = 0.028), showing that our model can accurately predict mortality of hospitalized COVID-19 patients.

摘要

预测2019冠状病毒病(COVID-19)患者的死亡风险对于在疫情爆发时分配有限的医疗资源具有重要价值。本研究通过开展一项单中心、回顾性、观察性研究,评估胸部X线(CXR)评分系统在多变量模型中预测COVID-19患者死亡率的作用,该研究纳入了连续收治的确诊COVID-19且有初始CXR检查结果的患者。CXR严重程度评分由三位具有12至15年胸部影像经验的放射科医生根据肺部受累范围和肺实质密度进行计算。采用逻辑回归分析确定死亡率的独立预测因素,以建立预测模型。使用验证数据集计算其作为受试者工作特征曲线下面积(AUROC)的预测价值。本研究共纳入628例患者(男性占58.1%)。发现年龄(p<0.001)、脓毒症(p<0.001)、S/F比值(p<0.001)、机械通气需求(p<0.001)和CXR严重程度评分(p=0.005)是死亡率的独立预测因素。我们使用这些变量建立了一个预测模型,其AUROC为0.926(0.891,0.962),显著高于世界卫生组织COVID严重程度分类的AUROC,即0.853(0.798,0.909)(单尾p值=0.028),表明我们的模型能够准确预测住院COVID-19患者的死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d3/9025720/7f0b3cbf28eb/jcm-11-02157-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验