Division of Molecular Genetics & Biochemistry, National Institute of Cancer Prevention & Research (ICMR-NICPR), I-7, Sector-39, Noida 201301, India.
Department of Zoology, University of Lucknow, Lucknow 226007, India.
Genes (Basel). 2022 Apr 8;13(4):655. doi: 10.3390/genes13040655.
Prostate cancer (PCa) is the most prevalent cancer (20%) in males and is accountable for a fifth (6.8%) cancer-related deaths in males globally. Smoking, obesity, race/ethnicity, diet, age, chemicals and radiation exposure, sexually transmitted diseases, etc. are among the most common risk factors for PCa. However, the basic change at the molecular level is the manifested confirmation of PCa. Thus, this study aims to evaluate the molecular signature for PCa in comparison to benign prostatic hyperplasia (BPH). Additionally, representation of differentially expressed genes (DEGs) are conducted with the help of some bioinformatics tools like DAVID, STRING, GEPIA, Cytoscape. The gene expression profile for the four data sets GSE55945, GSE104749, GSE46602, and GSE32571 was downloaded from NCBI, Gene Expression Omnibus (GEO). For the extracted DEGs, different types of analysis including functional and pathway enrichment analysis, protein-protein interaction (PPI) network construction, survival analysis and transcription factor (TF) prediction were conducted. We obtained 633 most significant upregulated genes and 1219 downregulated genes, and a sum total of 1852 DEGs were found from all four datasets after assessment. The key genes, including , , , and , are targeted by TF such as AR, Sp1, TP53, NF-KB1, STAT3, RELA. Moreover, miR-21-5p also found significantly associated with all the four key genes. Further, The Cancer Genome Atlas data (TCGA) independent database was used for validation of key genes , , , PTEN expression in prostate adenocarcinoma. All four key genes were found to be significantly correlated with overall survival in PCa. Therefore, the therapeutic target may be determined by the information of these key gene's findings for the diagnosis, prognosis and treatment of PCa.
前列腺癌(PCa)是男性中最常见的癌症(20%),也是全球男性癌症相关死亡的第五大原因(6.8%)。吸烟、肥胖、种族/民族、饮食、年龄、化学物质和辐射暴露、性传播疾病等是 PCa 的最常见危险因素。然而,分子水平的基本变化是 PCa 的表现确认。因此,本研究旨在评估与良性前列腺增生(BPH)相比的 PCa 的分子特征。此外,借助 DAVID、STRING、GEPIA、Cytoscape 等一些生物信息学工具,对差异表达基因(DEGs)进行了表达。从 NCBI、基因表达综合数据库(GEO)下载了四个数据集 GSE55945、GSE104749、GSE46602 和 GSE32571 的基因表达谱。对于提取的 DEGs,进行了不同类型的分析,包括功能和通路富集分析、蛋白质-蛋白质相互作用(PPI)网络构建、生存分析和转录因子(TF)预测。我们获得了 633 个最重要的上调基因和 1219 个下调基因,在评估后,从所有四个数据集中共发现 1852 个 DEGs。关键基因,包括 、 、 、 ,由 TF 如 AR、Sp1、TP53、NF-KB1、STAT3、RELA 靶向。此外,miR-21-5p 也与所有四个关键基因显著相关。此外,还使用癌症基因组图谱数据(TCGA)独立数据库验证了前列腺腺癌中的关键基因 、 、 、PTEN 的表达。所有四个关键基因都与 PCa 的总生存显著相关。因此,这些关键基因的发现信息可能为 PCa 的诊断、预后和治疗确定治疗靶点。