Cuadrado Coralia Fabiola, Díaz-Barrios Antonio, Campaña Kleber Orlando, Romani Eric Cardona, Quiroz Francisco, Nardecchia Stefania, Debut Alexis, Vizuete Karla, Niebieskikwiat Dario, Ávila Camilo Ernesto, Salazar Mateo Alejandro, Garzón-Romero Cristina, Blasco-Zúñiga Ailín, Rivera Miryan Rosita, Romero María Paulina
Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador.
School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador.
Pharmaceutics. 2022 Mar 26;14(4):705. doi: 10.3390/pharmaceutics14040705.
Microbial diseases have been declared one of the main threats to humanity, which is why, in recent years, great interest has been generated in the development of nanocomposites with antimicrobial capacity. The present work studied two magnetic nanocomposites based on graphene oxide (GO) and multiwall carbon nanotubes (MWCNTs). The synthesis of these magnetic nanocomposites consisted of three phases: first, the synthesis of iron magnetic nanoparticles (MNPs), second, the adsorption of the photosensitizer menthol-Zinc phthalocyanine (ZnMintPc) into MWCNTs and GO, and the third phase, encapsulation in poly (N-vinylcaprolactam-co-poly(ethylene glycol diacrylate)) poly (VCL-co-PEGDA) polymer VCL/PEGDA a biocompatible hydrogel, to obtain the magnetic nanocomposites VCL/PEGDA-MNPs-MWCNTs-ZnMintPc and VCL/PEGDA-MNPs-GO-ZnMintPc. In vitro studies were carried out using and bacteria and the yeast based on the Photodynamic/Photothermal (PTT/PDT) effect. This research describes the nanocomposites' optical, morphological, magnetic, and photophysical characteristics and their application as antimicrobial agents. The antimicrobial effect of magnetics nanocomposites was evaluated based on the PDT/PTT effect. For this purpose, doses of 65 mW·cm with 630 nm light were used. The VCL/PEGDA-MNPs-GO-ZnMintPc nanocomposite eliminated and colonies, while the VCL/PEGDA-MNPs-MWCNTs-ZnMintPc nanocomposite was able to kill the three types of microorganisms. Consequently, the latter is considered a broad-spectrum antimicrobial agent in PDT and PTT.
微生物疾病已被宣布为对人类的主要威胁之一,这就是为什么近年来人们对开发具有抗菌能力的纳米复合材料产生了浓厚兴趣。本研究工作对两种基于氧化石墨烯(GO)和多壁碳纳米管(MWCNTs)的磁性纳米复合材料进行了研究。这些磁性纳米复合材料的合成包括三个阶段:首先,合成铁磁性纳米颗粒(MNPs);其次,将光敏剂薄荷醇-锌酞菁(ZnMintPc)吸附到MWCNTs和GO中;第三阶段,封装在聚(N-乙烯基己内酰胺-共-聚(乙二醇二丙烯酸酯))聚(VCL-共-PEGDA)聚合物VCL/PEGDA(一种生物相容性水凝胶)中,以获得磁性纳米复合材料VCL/PEGDA-MNPs-MWCNTs-ZnMintPc和VCL/PEGDA-MNPs-GO-ZnMintPc。基于光动力/光热(PTT/PDT)效应,使用了[具体细菌名称]和[具体细菌名称]细菌以及[具体酵母名称]酵母进行体外研究。本研究描述了纳米复合材料的光学、形态、磁性和光物理特性及其作为抗菌剂的应用。基于PDT/PTT效应评估了磁性纳米复合材料的抗菌效果。为此,使用了波长为630 nm、功率为65 mW·cm的光。VCL/PEGDA-MNPs-GO-ZnMintPc纳米复合材料消除了[具体细菌名称]和[具体细菌名称]菌落,而VCL/PEGDA-MNPs-MWCNTs-ZnMintPc纳米复合材料能够杀死这三种类型的微生物。因此,后者被认为是PDT和PTT中的一种广谱抗菌剂。