Buffet-Bataillon Sylvie, Rizk Guillaume, Cattoir Vincent, Sassi Mohamed, Thibault Vincent, Del Giudice Jennifer, Gangneux Jean-Pierre
Inserm, Institut NUMECAN (Nutrition Metabolisms and Cancer), CHU Rennes, Univ Rennes, F-35000 Rennes, France.
ILLUMINA, F-35000 Rennes, France.
Microorganisms. 2022 Mar 25;10(4):711. doi: 10.3390/microorganisms10040711.
Metagenomics analysis is now routinely used for clinical diagnosis in several diseases, and we need confidence in interpreting metagenomics analysis of microbiota. Particularly from the side of clinical microbiology, we consider that it would be a major milestone to further advance microbiota studies with an innovative and significant approach consisting of processing steps and quality assessment for interpreting metagenomics data used for diagnosis. Here, we propose a methodology for taxon identification and abundance assessment of shotgun sequencing data of microbes that are well fitted for clinical setup. Processing steps of quality controls have been developed in order (i) to avoid low-quality reads and sequences, (ii) to optimize abundance thresholds and profiles, (iii) to combine classifiers and reference databases for best classification of species and abundance profiles for both prokaryotic and eukaryotic sequences, and (iv) to introduce external positive control. We find that the best strategy is to use a pipeline composed of a combination of different but complementary classifiers such as Kraken2/Bracken and Kaiju. Such improved quality assessment will have a major impact on the robustness of biological and clinical conclusions drawn from metagenomic studies.
宏基因组学分析目前已常规用于多种疾病的临床诊断,我们需要有信心解读微生物群的宏基因组学分析结果。特别是从临床微生物学的角度来看,我们认为采用一种创新且重要的方法进一步推进微生物群研究将是一个重大里程碑,该方法包括用于解读诊断用宏基因组学数据的处理步骤和质量评估。在此,我们提出一种适用于临床设置的微生物鸟枪法测序数据的分类鉴定和丰度评估方法。已制定质量控制的处理步骤,以便(i)避免低质量读数和序列,(ii)优化丰度阈值和图谱,(iii)结合分类器和参考数据库对原核生物和真核生物序列的物种和丰度图谱进行最佳分类,以及(iv)引入外部阳性对照。我们发现最佳策略是使用由不同但互补的分类器(如Kraken2/Bracken和Kaiju)组合而成的流程。这种改进的质量评估将对宏基因组学研究得出的生物学和临床结论的稳健性产生重大影响。