文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有生物相容性γ-环糊精修饰的 FeO 纳米粒子用于超顺磁热疗的癌症治疗的最大比损耗功率研究。

Study on Maximum Specific Loss Power in FeO Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia.

机构信息

Department of Physics, Faculty of Physics, West University of Timişoara, 300223 Timişoara, Romania.

Department of Plastic and Reconstructive Surgery, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy of Timişoara, 300041 Timişoara, Romania.

出版信息

Int J Mol Sci. 2021 Sep 17;22(18):10071. doi: 10.3390/ijms221810071.


DOI:10.3390/ijms221810071
PMID:34576233
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8470897/
Abstract

Different chemical agents are used for the biocompatibility and/or functionality of the nanoparticles used in magnetic hyperthermia to reduce or even eliminate cellular toxicity and to limit the interaction between them (van der Waals and magnetic dipolar interactions), with highly beneficial effects on the efficiency of magnetic hyperthermia in cancer therapy. In this paper we propose an innovative strategy for the biocompatibility of these nanoparticles using gamma-cyclodextrins (γ-CDs) to decorate the surface of magnetite (FeO) nanoparticles. The influence of the biocompatible organic layer of cyclodextrins, from the surface of FeO ferrimagnetic nanoparticles, on the maximum specific loss power in superparamagnetic hyperthermia, is presented and analyzed in detail in this paper. Furthermore, our study shows the optimum conditions in which the magnetic nanoparticles covered with gamma-cyclodextrin (FeO-γ-CDs) can be utilized in superparamagnetic hyperthermia for an alternative cancer therapy with higher efficiency in destroying tumoral cells and eliminating cellular toxicity.

摘要

不同的化学试剂用于生物相容性和/或功能的磁性热疗中使用的纳米粒子,以减少甚至消除细胞毒性,并限制它们之间的相互作用(范德华力和磁偶极子相互作用),对磁性热疗在癌症治疗中的效率有很大的益处。在本文中,我们提出了一种使用γ-环糊精(γ-CDs)来修饰磁铁矿(FeO)纳米粒子表面的磁性纳米粒子的生物相容性的创新策略。本文详细介绍并分析了生物相容性有机层环糊精从铁氧体铁磁性纳米粒子表面对超顺磁热疗中最大比损耗功率的影响。此外,我们的研究表明,在超顺磁热疗中,用γ-环糊精(FeO-γ-CDs)覆盖的磁性纳米粒子可以在最佳条件下用于替代癌症治疗,以更高的效率破坏肿瘤细胞并消除细胞毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/b10ecd11e7c5/ijms-22-10071-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/8a210a1165f2/ijms-22-10071-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/3948a6cde2d0/ijms-22-10071-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/0ed5d2a6ed39/ijms-22-10071-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/157a43a56a66/ijms-22-10071-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/f1a75925e128/ijms-22-10071-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/b1a6f1bda939/ijms-22-10071-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/d56f6fcac93f/ijms-22-10071-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/002946e9bcb7/ijms-22-10071-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/d77ff8463799/ijms-22-10071-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/e5b17be1f280/ijms-22-10071-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/b10ecd11e7c5/ijms-22-10071-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/8a210a1165f2/ijms-22-10071-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/3948a6cde2d0/ijms-22-10071-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/0ed5d2a6ed39/ijms-22-10071-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/157a43a56a66/ijms-22-10071-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/f1a75925e128/ijms-22-10071-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/b1a6f1bda939/ijms-22-10071-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/d56f6fcac93f/ijms-22-10071-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/002946e9bcb7/ijms-22-10071-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/d77ff8463799/ijms-22-10071-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/e5b17be1f280/ijms-22-10071-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdd/8470897/b10ecd11e7c5/ijms-22-10071-g011.jpg

相似文献

[1]
Study on Maximum Specific Loss Power in FeO Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia.

Int J Mol Sci. 2021-9-17

[2]
Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy.

Int J Mol Sci. 2022-4-14

[3]
FeO-PAA-(HP-γ-CDs) Biocompatible Ferrimagnetic Nanoparticles for Increasing the Efficacy in Superparamagnetic Hyperthermia.

Nanomaterials (Basel). 2022-7-27

[4]
In Vitro Superparamagnetic Hyperthermia Employing Magnetite Gamma-Cyclodextrin Nanobioconjugates for Human Squamous Skin Carcinoma Therapy.

Int J Mol Sci. 2024-7-31

[5]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[6]
Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids.

J Nanosci Nanotechnol. 2013-8

[7]
Radio frequency plasma assisted surface modification of FeO nanoparticles using polyaniline/polypyrrole for bioimaging and magnetic hyperthermia applications.

J Mater Sci Mater Med. 2021-8-25

[8]
Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy.

Mater Sci Eng C Mater Biol Appl. 2019-1-9

[9]
One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells.

Carbohydr Polym. 2020-3-6

[10]
Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.

Einstein (Sao Paulo). 2019-8-1

引用本文的文献

[1]
Special Issue on Nanoparticles in Nanobiotechnology and Nanomedicine.

Int J Mol Sci. 2024-12-31

[2]
An Overview of Polymeric Nanoplatforms to Deliver Veterinary Antimicrobials.

Nanomaterials (Basel). 2024-2-9

[3]
The Role of Cyclodextrin in the Construction of Nanoplatforms: From Structure, Function and Application Perspectives.

Pharmaceutics. 2023-5-19

[4]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[5]
High Efficacy on the Death of Breast Cancer Cells Using SPMHT with Magnetite Cyclodextrins Nanobioconjugates.

Pharmaceutics. 2023-4-4

[6]
Nanomaterials in Cancer Diagnosis and Therapy.

Int J Mol Sci. 2022-11-9

[7]
Magneto-Mechanical Approach in Biomedicine: Benefits, Challenges, and Future Perspectives.

Int J Mol Sci. 2022-9-22

[8]
FeO-PAA-(HP-γ-CDs) Biocompatible Ferrimagnetic Nanoparticles for Increasing the Efficacy in Superparamagnetic Hyperthermia.

Nanomaterials (Basel). 2022-7-27

[9]
Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy.

Int J Mol Sci. 2022-4-14

本文引用的文献

[1]
Effective Cancer Theranostics with Polymer Encapsulated Superparamagnetic Nanoparticles: Combined Effects of Magnetic Hyperthermia and Controlled Drug Release.

ACS Biomater Sci Eng. 2017-7-10

[2]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[3]
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study.

Int J Mol Sci. 2020-1-31

[4]
Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe O Nanoparticles for Theranostics In Vivo.

Adv Healthc Mater. 2018-1-22

[5]
Higher temperature improves the efficacy of magnetic fluid hyperthermia for Lewis lung cancer in a mouse model.

Thorac Cancer. 2012-2

[6]
Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy.

Adv Healthc Mater. 2016-6-14

[7]
Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future.

Cancer Treat Rev. 2015-5-27

[8]
Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes.

ACS Nano. 2015-2-27

[9]
Antitumor immunity by magnetic nanoparticle-mediated hyperthermia.

Nanomedicine (Lond). 2014-8

[10]
Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: a review.

Int J Hyperthermia. 2013-9-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索