Suppr超能文献

基于多模态双通道网络的神经网络模型的癫痫发作检测方法。

Detection Method of Epileptic Seizures Using a Neural Network Model Based on Multimodal Dual-Stream Networks.

机构信息

School of Information Science and Engineering, Shandong University, Qingdao 266237, China.

School of Information Engineering, Changji University, Changji Hui Autonomous Prefecture, Changji 831100, China.

出版信息

Sensors (Basel). 2024 May 24;24(11):3360. doi: 10.3390/s24113360.

Abstract

Epilepsy is a common neurological disorder, and its diagnosis mainly relies on the analysis of electroencephalogram (EEG) signals. However, the raw EEG signals contain limited recognizable features, and in order to increase the recognizable features in the input of the network, the differential features of the signals, the amplitude spectrum and the phase spectrum in the frequency domain are extracted to form a two-dimensional feature vector. In order to solve the problem of recognizing multimodal features, a neural network model based on a multimodal dual-stream network is proposed, which uses a mixture of one-dimensional convolution, two-dimensional convolution and LSTM neural networks to extract the spatial features of the EEG two-dimensional vectors and the temporal features of the signals, respectively, and combines the advantages of the two networks, using the hybrid neural network to extract both the temporal and spatial features of the signals at the same time. In addition, a channel attention module was used to focus the model on features related to seizures. Finally, multiple sets of experiments were conducted on the Bonn and New Delhi data sets, and the highest accuracy rates of 99.69% and 97.5% were obtained on the test set, respectively, verifying the superiority of the proposed model in the task of epileptic seizure detection.

摘要

癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电图(EEG)信号的分析。然而,原始 EEG 信号中包含的可识别特征有限,为了增加网络输入中的可识别特征,提取信号的差分特征、频域中的幅度谱和相位谱,形成二维特征向量。为了解决多模态特征识别的问题,提出了一种基于多模态双流网络的神经网络模型,该模型使用一维卷积、二维卷积和 LSTM 神经网络的混合,分别提取 EEG 二维向量的空间特征和信号的时间特征,并结合两种网络的优势,使用混合神经网络同时提取信号的时间和空间特征。此外,还使用通道注意力模块使模型专注于与癫痫发作相关的特征。最后,在 Bonn 和 New Delhi 数据集上进行了多组实验,在测试集上分别获得了 99.69%和 97.5%的最高准确率,验证了所提出模型在癫痫发作检测任务中的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eff4/11174829/0fcaa4d50bbe/sensors-24-03360-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验