Suppr超能文献

基于脑-机接口设备和基于光纤布拉格光栅的足底压力测量传感平台的人体步态脑信号 AI 预测。

AI Prediction of Brain Signals for Human Gait Using BCI Device and FBG Based Sensorial Platform for Plantar Pressure Measurements.

机构信息

College of Chemicals & Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Apr 18;22(8):3085. doi: 10.3390/s22083085.

Abstract

Artificial intelligence (AI) in developing modern solutions for biomedical problems such as the prediction of human gait for human rehabilitation is gaining ground. An attempt was made to use plantar pressure information through fiber Bragg grating (FBG) sensors mounted on an in-sole, in tandem with a brain-computer interface (BCI) device to predict brain signals corresponding to sitting, standing and walking postures of a person. Posture classification was attained with an accuracy range between 87-93% from FBG and BCI signals using machine learning models such as K-nearest neighbor (KNN), logistic regression (LR), support vector machine (SVM), and naïve Bayes (NB). These models were used to identify electrodes responding to sitting, standing and walking activities of four users from a 16 channel BCI device. Six electrode positions based on the 10-20 system for electroencephalography (EEG) were identified as the most sensitive to plantar activities and found to be consistent with clinical investigations of the sensorimotor cortex during foot movement. A prediction of brain EEG corresponding to given FBG data with lowest mean square error (MSE) values (0.065-0.109) was made with the selection of a long-short term memory (LSTM) machine learning model when compared to the recurrent neural network (RNN) and gated recurrent unit (GRU) models.

摘要

人工智能(AI)在开发用于生物医学问题的现代解决方案方面取得了进展,例如预测人类康复的步态。尝试通过安装在鞋底的光纤布拉格光栅(FBG)传感器结合脑机接口(BCI)设备来利用足底压力信息,以预测对应于一个人坐姿、站立和行走姿势的脑信号。使用机器学习模型(如 K-最近邻(KNN)、逻辑回归(LR)、支持向量机(SVM)和朴素贝叶斯(NB))从 FBG 和 BCI 信号中获得了 87-93%的姿态分类精度。这些模型用于从 16 通道 BCI 设备中识别四个用户的对应于坐姿、站立和行走活动的电极。基于脑电图(EEG)的 10-20 系统确定了六个电极位置对足底活动最敏感,并且与传感器运动皮层在脚部运动期间的临床研究一致。与递归神经网络(RNN)和门控递归单元(GRU)模型相比,选择长短期记忆(LSTM)机器学习模型可以根据最低均方误差(MSE)值(0.065-0.109)对给定的 FBG 数据进行脑 EEG 的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/548e/9025845/3d49eb46e472/sensors-22-03085-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验