Suppr超能文献

解码大脑信号以分类步态方向预期。

Decoding Brain Signals to Classify Gait Direction Anticipation.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:309-312. doi: 10.1109/EMBC48229.2022.9871566.

Abstract

The use of brain-computer interface (BCI) technology has emerged as a promising rehabilitation approach for patients with motor function and motor-related disorders. BCIs provide an augmentative communication platform for controlling advanced assistive robots such as a lower-limb exoskeleton. Brain recordings collected by an electroencephalography (EEG) system have been employed in the BCI platform to command the exoskeleton. To date, the literature on this topic is limited to the prediction of gait intention and gait variations from EEG signals. This study, however, aims to predict the anticipated gait direction using a stream of EEG signals collected from the brain cortex. Three healthy participants (age range: 29-31, 2 female) were recruited. While wearing the EEG device, the participants were instructed to initiate gait movement toward the direction of the arrow triggers (pointing forward, backward, left, or right) being shown on a screen with a blank white background. Collected EEG data was then epoched around the trigger timepoints. These epochs were then converted to the time-frequency domain using event- related synchronization (ERS) and event-related desynchronization (ERD) methods. Finally, the classification pipeline was constructed using logistic regression (LR), support vector machine (SVM), and convolutional neural network (CNN). A ten-fold cross-validation scheme was used to evaluate the classification performance. The results revealed that the CNN classifier outperforms the other two classifiers with an accuracy of 0.75. Clinical Relevance - The outcome of this study has the potential to be ultimately used for interactive navigation of the lower-limb exoskeletons during robotic rehabilitation therapy and enhance neurodegeneration and neuroplasticity in a wide range of individuals with lower-limb motor function disabilities.

摘要

脑机接口 (BCI) 技术已成为一种有前途的运动功能和运动相关障碍患者康复方法。BCI 为控制下肢外骨骼等先进辅助机器人提供了增强的交流平台。脑电图 (EEG) 系统收集的脑记录已被用于 BCI 平台来控制外骨骼。迄今为止,关于这个主题的文献仅限于从 EEG 信号预测步态意图和步态变化。然而,本研究旨在使用从大脑皮层采集的 EEG 信号流预测预期的步态方向。招募了三名健康参与者(年龄范围:29-31 岁,2 名女性)。参与者在佩戴 EEG 设备的同时,被指示朝着屏幕上箭头触发器(指向前、后、左或右)所示的方向开始步态运动,屏幕背景为空白白色。然后围绕触发时间点对采集的 EEG 数据进行分段。这些时段随后使用事件相关同步 (ERS) 和事件相关去同步 (ERD) 方法转换到时频域。最后,使用逻辑回归 (LR)、支持向量机 (SVM) 和卷积神经网络 (CNN) 构建分类管道。使用十折交叉验证方案评估分类性能。结果表明,CNN 分类器的准确率为 0.75,优于其他两种分类器。临床相关性 - 本研究的结果最终有可能用于机器人康复治疗期间下肢外骨骼的交互式导航,并增强广泛的下肢运动功能障碍个体的神经退行性变和神经可塑性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验