Suppr超能文献

持续产生的活性氧会导致人主动脉瓣细胞的蛋白 S-谷胱甘肽化转变,使它们从硬化表型转变为狭窄表型。

Enduring Reactive Oxygen Species Emission Causes Aberrant Protein S-Glutathionylation Transitioning Human Aortic Valve Cells from a Sclerotic to a Stenotic Phenotype.

机构信息

Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy.

Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy.

出版信息

Antioxid Redox Signal. 2022 Nov;37(13-15):1051-1071. doi: 10.1089/ars.2021.0133. Epub 2022 Aug 2.

Abstract

During calcific aortic valve stenosis (CAVS) progression, oxidative stress and endothelial dysfunction mark the initial pathogenic steps with a parallel dysregulation of the antioxidant systems. Here, we tested whether oxidation-induced protein S-glutathionylation (P-SSG) accounts for a phenotypic switch in human aortic valvular tissue, eventually leading to calcium deposition. Next, we tested whether countering this reactive oxygen species (ROS) surge would prevent these perturbations. We employed state-of-the-art technologies, such as electron paramagnetic resonance (EPR), liquid chromatography-tandem mass spectrometry, imaging flow-cytometry, and live-cell imaging on human excised aortic valves and primary valve endothelial cells (VECs). We observed that a net rise in EPR-detected ROS emission marked the transition from fibrotic to calcific in human CAVS specimens, coupled to a progressive increment in P-SSG deposition. In human VECs (hVECs), treatment with 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid triggered highly oxidizing conditions prompting P-SSG accumulation, damaging mitochondria, and inducing endothelial nitric oxide synthase uncoupling. All the events conjured up in morphing these cells from their native endothelial phenotype into a damaged calcification-inducing one. As proof of principle, the use of the antioxidant N-acetyl-L-cysteine prevented these alterations. Borne as a compensatory system to face excessive oxidative burden, with time, P-SSG contributes to the morphing of hVECs from their innate phenotype into a damaged one, paving the way to calcium deposition. Our data suggest that, in the human aortic valve, unremitted ROS emission along with a P-SSG build-up occurs and accounts, at least in part, for the morphological/functional changes leading to CAVS. . 37, 1051-1071.

摘要

在钙化性主动脉瓣狭窄(CAVS)进展过程中,氧化应激和内皮功能障碍标志着初始发病步骤,同时抗氧化系统也出现了平行失调。在这里,我们测试了氧化诱导的蛋白质 S-谷胱甘肽化(P-SSG)是否是导致人主动脉瓣组织发生钙沉积的表型转换的原因。接下来,我们测试了对抗这种活性氧(ROS)激增是否可以防止这些干扰。 我们采用了最先进的技术,如电子顺磁共振(EPR)、液相色谱-串联质谱、成像流式细胞术和活细胞成像,用于研究人离体主动脉瓣和原代主动脉内皮细胞(VECs)。我们观察到,EPR 检测到的 ROS 发射的净增加标志着人 CAVS 标本从纤维化到钙化的转变,同时 P-SSG 沉积也逐渐增加。在人血管内皮细胞(hVECs)中,用 2-乙酰氨基-3-[4-(2-乙酰氨基-2-羧乙基硫代磺酰基氨基)苯基硫代碳酰氨基硫代磺酰基]丙酸处理会引发高度氧化条件,促使 P-SSG 积累,损伤线粒体,并诱导内皮型一氧化氮合酶解偶联。所有这些事件都会使这些细胞从其天然内皮表型转变为受损的钙化诱导表型。作为原理验证,抗氧化剂 N-乙酰-L-半胱氨酸的使用阻止了这些变化。 作为应对过度氧化负荷的代偿系统,随着时间的推移,P-SSG 导致 hVECs 从其固有表型转变为受损表型,为钙沉积铺平了道路。 我们的数据表明,在人主动脉瓣中,持续的 ROS 发射和 P-SSG 的积累发生,至少部分解释了导致 CAVS 的形态/功能变化。 37, 1051-1071.

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验