Suppr超能文献

基于 U-Net 的模型加速心脏扩散张量成像:实现单次屏气。

Accelerating Cardiac Diffusion Tensor Imaging With a U-Net Based Model: Toward Single Breath-Hold.

机构信息

Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.

National Heart and Lung Institute, Imperial College, London, UK.

出版信息

J Magn Reson Imaging. 2022 Dec;56(6):1691-1704. doi: 10.1002/jmri.28199. Epub 2022 Apr 22.

Abstract

BACKGROUND

In vivo cardiac diffusion tensor imaging (cDTI) characterizes myocardial microstructure. Despite its potential clinical impact, considerable technical challenges exist due to the inherent low signal-to-noise ratio.

PURPOSE

To reduce scan time toward one breath-hold by reconstructing diffusion tensors for in vivo cDTI with a fitting-free deep learning approach.

STUDY TYPE

Retrospective.

POPULATION

A total of 197 healthy controls, 547 cardiac patients.

FIELD STRENGTH/SEQUENCE: A 3 T, diffusion-weighted stimulated echo acquisition mode single-shot echo-planar imaging sequence.

ASSESSMENT

A U-Net was trained to reconstruct the diffusion tensor elements of the reference results from reduced datasets that could be acquired in 5, 3 or 1 breath-hold(s) (BH) per slice. Fractional anisotropy (FA), mean diffusivity (MD), helix angle (HA), and sheetlet angle (E2A) were calculated and compared to the same measures when using a conventional linear-least-square (LLS) tensor fit with the same reduced datasets. A conventional LLS tensor fit with all available data (12 ± 2.0 [mean ± sd] breath-holds) was used as the reference baseline.

STATISTICAL TESTS

Wilcoxon signed rank/rank sum and Kruskal-Wallis tests. Statistical significance threshold was set at P = 0.05. Intersubject measures are quoted as median [interquartile range].

RESULTS

For global mean or median results, both the LLS and U-Net methods with reduced datasets present a bias for some of the results. For both LLS and U-Net, there is a small but significant difference from the reference results except for LLS: MD 5BH (P = 0.38) and MD 3BH (P = 0.09). When considering direct pixel-wise errors the U-Net model outperformed significantly the LLS tensor fit for reduced datasets that can be acquired in three or just one breath-hold for all parameters.

DATA CONCLUSION

Diffusion tensor prediction with a trained U-Net is a promising approach to minimize the number of breath-holds needed in clinical cDTI studies.

EVIDENCE LEVEL

4 TECHNICAL EFFICACY: Stage 1.

摘要

背景

体内心脏扩散张量成像(cDTI)可用于描述心肌的微观结构。尽管它具有潜在的临床影响,但由于固有信噪比低,仍然存在相当大的技术挑战。

目的

通过使用无拟合的深度学习方法对体内 cDTI 进行扩散张量重建,以减少单次屏气的扫描时间。

研究类型

回顾性。

人群

共纳入 197 例健康对照者和 547 例心脏患者。

磁场强度/序列:使用 3T,扩散加权激发回波获取模式单次激发回波平面成像序列。

评估

使用 U-Net 从可在每个切片采集 5、3 或 1 次屏气的减少数据集中重建参考结果的扩散张量元素。计算各向异性分数(FA)、平均扩散系数(MD)、螺旋角(HA)和薄片角(E2A),并将其与使用相同减少数据集的传统线性最小二乘法(LLS)张量拟合的相同测量值进行比较。使用所有可用数据(12±2.0[均值±标准差]次屏气)的传统 LLS 张量拟合作为参考基线。

统计学检验

Wilcoxon 符号秩/秩和检验和 Kruskal-Wallis 检验。统计显著性阈值设为 P=0.05。个体内测量结果以中位数[四分位数范围]表示。

结果

对于全局均值或中位数结果,使用减少数据集的 LLS 和 U-Net 方法都对某些结果存在偏差。对于 LLS 和 U-Net,除 LLS 外,除 MD 5BH(P=0.38)和 MD 3BH(P=0.09)外,与参考结果都有小但显著的差异。当考虑直接像素级误差时,对于可在 3 次或仅 1 次屏气中采集的减少数据集,U-Net 模型在所有参数上都显著优于 LLS 张量拟合。

数据结论

使用训练后的 U-Net 预测扩散张量是一种很有前途的方法,可以减少临床 cDTI 研究中所需的屏气次数。

证据水平

4 级 技术功效:1 级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1235/9790699/9b70fc940702/JMRI-56-1691-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验