Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.
National Heart and Lung Institute, Imperial College, London, UK.
J Magn Reson Imaging. 2022 Dec;56(6):1691-1704. doi: 10.1002/jmri.28199. Epub 2022 Apr 22.
In vivo cardiac diffusion tensor imaging (cDTI) characterizes myocardial microstructure. Despite its potential clinical impact, considerable technical challenges exist due to the inherent low signal-to-noise ratio.
To reduce scan time toward one breath-hold by reconstructing diffusion tensors for in vivo cDTI with a fitting-free deep learning approach.
Retrospective.
A total of 197 healthy controls, 547 cardiac patients.
FIELD STRENGTH/SEQUENCE: A 3 T, diffusion-weighted stimulated echo acquisition mode single-shot echo-planar imaging sequence.
A U-Net was trained to reconstruct the diffusion tensor elements of the reference results from reduced datasets that could be acquired in 5, 3 or 1 breath-hold(s) (BH) per slice. Fractional anisotropy (FA), mean diffusivity (MD), helix angle (HA), and sheetlet angle (E2A) were calculated and compared to the same measures when using a conventional linear-least-square (LLS) tensor fit with the same reduced datasets. A conventional LLS tensor fit with all available data (12 ± 2.0 [mean ± sd] breath-holds) was used as the reference baseline.
Wilcoxon signed rank/rank sum and Kruskal-Wallis tests. Statistical significance threshold was set at P = 0.05. Intersubject measures are quoted as median [interquartile range].
For global mean or median results, both the LLS and U-Net methods with reduced datasets present a bias for some of the results. For both LLS and U-Net, there is a small but significant difference from the reference results except for LLS: MD 5BH (P = 0.38) and MD 3BH (P = 0.09). When considering direct pixel-wise errors the U-Net model outperformed significantly the LLS tensor fit for reduced datasets that can be acquired in three or just one breath-hold for all parameters.
Diffusion tensor prediction with a trained U-Net is a promising approach to minimize the number of breath-holds needed in clinical cDTI studies.
4 TECHNICAL EFFICACY: Stage 1.
体内心脏扩散张量成像(cDTI)可用于描述心肌的微观结构。尽管它具有潜在的临床影响,但由于固有信噪比低,仍然存在相当大的技术挑战。
通过使用无拟合的深度学习方法对体内 cDTI 进行扩散张量重建,以减少单次屏气的扫描时间。
回顾性。
共纳入 197 例健康对照者和 547 例心脏患者。
磁场强度/序列:使用 3T,扩散加权激发回波获取模式单次激发回波平面成像序列。
使用 U-Net 从可在每个切片采集 5、3 或 1 次屏气的减少数据集中重建参考结果的扩散张量元素。计算各向异性分数(FA)、平均扩散系数(MD)、螺旋角(HA)和薄片角(E2A),并将其与使用相同减少数据集的传统线性最小二乘法(LLS)张量拟合的相同测量值进行比较。使用所有可用数据(12±2.0[均值±标准差]次屏气)的传统 LLS 张量拟合作为参考基线。
Wilcoxon 符号秩/秩和检验和 Kruskal-Wallis 检验。统计显著性阈值设为 P=0.05。个体内测量结果以中位数[四分位数范围]表示。
对于全局均值或中位数结果,使用减少数据集的 LLS 和 U-Net 方法都对某些结果存在偏差。对于 LLS 和 U-Net,除 LLS 外,除 MD 5BH(P=0.38)和 MD 3BH(P=0.09)外,与参考结果都有小但显著的差异。当考虑直接像素级误差时,对于可在 3 次或仅 1 次屏气中采集的减少数据集,U-Net 模型在所有参数上都显著优于 LLS 张量拟合。
使用训练后的 U-Net 预测扩散张量是一种很有前途的方法,可以减少临床 cDTI 研究中所需的屏气次数。
4 级 技术功效:1 级。